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ABSTRACT: Proteins and ligands sample a conformational
ensemble that governs molecular recognition, activity, and
dissociation. In structure-based drug design, access to this
conformational ensemble is critical to understand the balance
between entropy and enthalpy in lead optimization. However,
ligand conformational heterogeneity is currently severely
underreported in crystal structures in the Protein Data
Bank, owing in part to a lack of automated and unbiased
procedures to model an ensemble of protein−ligand states
into X-ray data. Here, we designed a computational method,
qFit-ligand, to automatically resolve conformationally averaged
ligand heterogeneity in crystal structures, and applied it to a
large set of protein receptor−ligand complexes. In an analysis
of the cancer related BRD4 domain, we found that up to 29% of protein crystal structures bound with drug-like molecules
present evidence of unmodeled, averaged, relatively isoenergetic conformations in ligand−receptor interactions. In many
retrospective cases, these alternate conformations were adventitiously exploited to guide compound design, resulting in
improved potency or selectivity. Combining qFit-ligand with high-throughput screening or multitemperature crystallography
could therefore augment the structure-based drug design toolbox.

■ INTRODUCTION
Ligands and their protein receptors sample an ensemble of
conformations in solution. The energetic contribution of
conformational entropy plays a critical role in receptor−ligand
molecular recognition,1,2 but the ensemble of conformations
that determines the free energy of binding, activity, and
dissociation often remains poorly characterized. The majority
of three-dimensional protein structures are single, static models
obtained from X-ray crystallography by averaging over the
unique conformations in the unit cells. Crystallographic atomic
displacement parameters (ADP) quantify harmonic displace-
ments from average atomic positions but are adversely affected
when unmodeled discrete alternate conformations overlap. By
their nature, such static, harmonic models cannot rationalize
molecular attributes that rely on dynamic, anharmonic
displacements of atoms.3,4 Revealing discrete conformations5−7

that are more fully representative of the receptor−ligand
conformational ensemble from X-ray electron density maps
would overcome this limitation and create new opportunities
to address open questions in chemical and structural biology.

For example, such models might help to provide a structural
basis for on-pathway conformational intermediates in substrate
binding or release detected by NMR.8,9

Additionally, an incomplete picture of receptor−ligand
structural dynamics impedes structure-based drug design.
While overall binding affinities measured in solution report
on a receptor−ligand ensemble, the structure−activity relation-
ships are often informed by static models for further
optimization, with some exceptions that incorporate flexi-
bility.10 During small-molecule optimization, even minor
chemical changes can lead to apparently altered binding
modes that are unforeseen due to the limitations of
conventional X-ray structural models, frustrating design11,12

(Figure 1A). One hypothesis to explain how subtle
modifications cause a switch to a second binding pose is that
the unmodified ligand samples the second pose at low, but
potentially detectable, occupancy (Figure 1B). Examples where
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subtle changes in chemical structure of the ligand led to
different binding modes are abundant. Fragment optimization
of CDK8 inhibitors revealed that small modifications led to a
new binding mode, which was exploited to develop potent and
selective inhibitors.13 Dramatically different binding modes as
a result of minor changes in the chemical structure of the
ligand are also illustrated by Hsp90 and PTR1 inhibitors. In
the course of structure-based optimization of Hsp90 inhibitors,
Casale and co-workers observed a flipped binding mode of the
ligand in the crystal structure, leading them to change the
direction of design toward a low nanomolar compound (Figure
1C).14 In PTR1, compounds that presumably could not be
accommodated by the binding site ultimately led to a boost in
affinity, owing to altered binding modes.14,15 In human
lipoprotein-associated phospholipase A2, two related ligands
(Figure 1D) that explored distinct subpockets were merged
into a more potent ligand (Figure 1E).16 These selected
examples highlight both the perils of design based solely on an
initial ligand pose but also how the fortuitous discovery of
alternate poses can create new opportunities for design. It is
possible that some of these “new” binding poses pre-exist as
alternative conformations at slightly higher energies than the
conformation modeled into the conventional X-ray structure.
Many of those are infrequently sampled due to high energy

differences and fall below the detection level in the maps.
However, some of these conformations may be evident in
electron density maps but at levels that are frequently ignored
in modeling.
Indeed, in the phospholipase example above, the presence of

difference electron density suggested that multiple conforma-
tions might have been sampled in at least one of the smaller
ligands (Figure 1F). This view posits that degeneracies in
ligand binding modes can also be accessed by small
modifications of the ligand chemical structure that shift the
receptor−ligand equilibrium ensemble. This hypothesis is
supported by additional anecdotal examples, such as long time-
scale molecular dynamics (MD) simulations of trypsin, in
which both the ligand and receptor adopt many stable
configurations.17 Experimentally, multiple conformations can
be present in X-ray electron density, as in HDAC6, where
many related ligands were modeled in multiple conformations
in concert with distinct conformations of the receptor.18 In
other cases where the alternate conformations have been
experimentally revealed, they have been exploited to improve
affinity. For example, X-ray crystallography revealed alternate
conformations for singly substituted EphB4 ligands that
inspired the creation of bis-substituted ligands with increased
potency (Figure 1G).19 NMR measurements of conforma-

Figure 1. Ligand structural dynamics and minor changes during fragment optimization lead to new binding modes and drive drug design. (A)
Subtle changes in chemical structure of ligands can impose new binding modes. (B) Near isoenergetic receptor−ligand conformations exchange in
dynamic equilibrium in crystal structures. These conformations can inform the design of a ligand with higher affinity. (C) Hsp90 inhibitors in gray
(PDB 4CWO) and gold (PDB 4CWN). (D) Subtle changes in chemical structures lead to changes in binding pose for Lp-PLA2, changing the
course of design (PDBs 5JAL, 5JAO). (E) New Lp-PLA2 inhibitor designed as a result of observed alternate binding poses of fragments (PDB
5JAP). (F) Evidence of difference density in X-ray crystal structure of Lp-PLA2 fragment shows alternate binding poses pre-exist at low occupancy
(PDB 5JAL). (G) Alternate conformations exploited in the design of EphB4-binding ligands (PDB 2VWX). Electron densities are shown at 1.5σ.
Positive (green) and negative (red) difference densities in part F are shown at +3.0σ and −3.0σ, respectively.
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tional heterogeneity for ligands generated against the
antibacterial target LpxC uncovered a larger cryptic envelope
that was filled by larger, more potent ligands.20 Collectively,
these examples suggest that multiple ligand poses are likely
energetically accessible for many proteins. Fully realizing the
potential of this phenomenon in structure-based design,
exemplified by EphB4 and LpxC inhibitors, requires reliable
characterization of pre-existing conformational heterogeneity
(Figure 1B) of ligand−receptor complexes.
While protein conformational heterogeneity has been

automatically and systematically characterized in X-ray
crystallography data,7,21−24 ligand conformational heterogene-
ity is less explored. Various software algorithms can identify
and build ligands into electron density maps without human
intervention;25−30 however, these approaches typically provide
several top scoring ligand conformations at unit occupancy.
While in principle the user can select multiple candidate
conformations for the final model, none of these approaches
consider an ensemble of alternate conformations from the
outset. Moreover, they may build unrealistic conformations
that incorrectly fit into the ensemble-averaged electron
density.31 Despite the importance of low occupancy alternative
conformations in biochemical function and ligand design,
statistical measures for monitoring the fit of ensemble models
to data are less developed than for single conformer models.
Here, we present a new, automated approach based on

qFit,22,23 called qFit-ligand, to create parsimonious multicon-
former ligand models in crystallographic electron densities. We
first surveyed the PDB to investigate ligand heterogeneity in
current crystal structures and selected a diverse, curated
benchmark set of pharmaceutically relevant protein targets
with alternate ligand conformations across a wide range of
resolution and occupancy (Supporting Information, Table S1).

We found that qFit-ligand can detect alternate conformations
at occupancies down to 20%, even at relatively modest
resolutions of 2.0 Å. We then applied our method
prospectively to all cases of the Drug Design Data Resource
(D3R, drugdesigndata.org), a subset of the Twilight Data-
base,32 and all PDB entries for the bromodomain-containing
protein 4 (BRD4), revealing unmodeled alternate conforma-
tions in 29% of the cases for the latter. To evaluate the quality
of our multiconformer ligands, we calculated R-factors and
ligand energies relative to a single conformer ligand model.
Our results indicate that qFit-ligand is a powerful, efficient, and
user-friendly tool to model and discover alternate ligand
conformations.

■ RESULTS

Creating a Benchmark Set of True Positive Ligand
Alternative Conformations from the PDB. To estimate
the prevalence of multiconformer ligands in crystal structures,
we surveyed all 130054 PDB entries as of June 2017 that
contained noncovalently bound ligands with more than 15
non-hydrogen atoms in their X-ray crystal structure. This
resulted in 44620 PDB entries totaling 133724 ligands. Of
those, 2611 ligands, or less than 2% (1078 unique ligand
codes), distributed over 1845 PDB entries, consisted of two or
more alternate conformations (Supporting Information,
Materials and Methods, Figure S1). Many of these molecules
are common crystallographic additives (PEG, cholesterol, etc.)
or metabolites (ATP, NADPH, etc.). We therefore manually
curated a true positive benchmark set of receptors of
pharmaceutical interest containing multiconformer, drug-like
molecules. Cases where ligands adopted entirely different
binding modes, such as flipped ligands, were discarded. This
resulted in 90 crystal structures that could be stably refined

Figure 2. Benchmark statistics. (A) Categories of alternate conformations present in the benchmark. (B) Conformer occupancies pre- (blue) and
post- (orange) rerefinement. (C) Ligand A to B conformer RMSD, pre (blue) and post (orange) rerefinement. (D) Occupancy shift versus mean
B-factor difference after rerefinement.
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against the deposited structure factors and CIF restraints files
(Supporting Information, Table S1).
We apportioned the conformational heterogeneity of ligands

in our benchmark set into four categories (Figure 2A):
terminal end flips, where only terminal atoms are flipped/
rotated, ring flips where a ring system is flipped, usually by
180°, branching ligands, where a side chain or branch of a
ligand has an alternate conformation, and displaced ligands,
where all atoms are at least slightly displaced in combination
with differences in their internal degrees of freedom. The
benchmark set heavily overrepresented 50/50 occupancy splits
(Figure 2B), reflecting a historical tendency against refining

occupancies in favor of refining ADPs only. Inaccurate 50/50
occupancy splits do not inform on which conformation
represents the dominant binding mode, which is often critical
information for design decisions in lead optimization.
Rerefinement with PHENIX33 substantially broadened the
distribution (Figure 2B). Unlike the occupancies, the RMSD
between alternate conformations was similar after rerefinement
(Figure 2C). Interestingly, we observed no correlation between
occupancy shift and difference in mean B-factor (Figure 2D).
This result is in contrast to earlier reports,34,35 likely owing to
improvements in refinement software.

Figure 3. qFit-ligand workflow and statistics on synthetic data. (A) Rigid clusters are defined as rings or terminal ends, and rotatable bonds as any
bond that is not part of a ring. The local search finds possible positions and orientations of each cluster in the binding site, avoiding steric clashes
with the protein. As clusters are joined, torsions and degrees of freedom are sampled. Up to five ligand conformations that best match the ligand
density are selected and combined with the protein model to give a final ligand multiconformer model. (B) Violin plot of categories at 1.60 Å
resolution and occupancy 0.50 across 90 test cases. The white dot represents the median, the bold center line represent the interquartile range
(IQR), and the thin center line represents the percentile range 25th −1.5 IQR to 75th +1.5 IQR. Lower nRMSD is better. (C) Heatmap of
category vs resolution at 0.50 occupancy. Lower nRMSD is better. (D) Violin plot for representative resolution 1.60 Å and 0.50/0.50 occupancy at
optimal parameters. (E) Heatmap of normalized RMSD at optimal parameters (resolution vs occupancy).

Journal of Medicinal Chemistry Article

DOI: 10.1021/acs.jmedchem.8b01292
J. Med. Chem. XXXX, XXX, XXX−XXX

D

http://pubs.acs.org/doi/suppl/10.1021/acs.jmedchem.8b01292/suppl_file/jm8b01292_si_001.pdf
http://dx.doi.org/10.1021/acs.jmedchem.8b01292
http://pubs.acs.org/action/showImage?doi=10.1021/acs.jmedchem.8b01292&iName=master.img-003.jpg&w=299&h=455


Developing the qFit-ligand Algorithm and Calibra-
tion against Synthetic Data. We designed the qFit-ligand
algorithm to iteratively explore a vast conformational space to
determine a parsimonious ensemble of up to five occupancy-
weighted conformations that, collectively, optimally fit the
electron density (Figure 3A and Supporting Information,
Materials and Methods, Figure S2). Briefly, qFit-ligand takes as
input a refined, single conformation receptor−ligand structure
in PDB format, and a 2mFo − DFc density map. It first
determines rotatable bonds and rigid groups of atoms within
the ligand (Supporting Information, Materials and Methods,
Figure S2). Starting from each rigid group, qFit-ligand performs
a local, six-dimensional translational and rotational search in
the rigid group’s neighborhood, selecting up to five occupancy-

weighted candidate positions that, collectively, minimize the
real-space density residual of the rigid group. In subsequent
steps, qFit-ligand iteratively grows the rigid group by
exhaustively sampling increments of several torsion angles
simultaneously while avoiding collisions with the receptor. At
each step, it selects up to five occupancy-weighted con-
formations by again minimizing the density residual. This is
repeated until all torsion angles are determined and the full
ligand is built up. The maximum number of conformations
generated by qFit-ligand at this stage is five times the number
of rigid groups. The final occupancy-weighted, multiconformer
ensemble is selected from this pool by combining cross-
correlation, geometric, and density residual measures. The

Figure 4. Electron density support measures and energetics of qFit-ligand multiconformers are similar to those of single-conformer models for the
benchmark set while reporting on conformational heterogeneity. (A) nRMSD distributions by category of conformational heterogeneity. The
nRMSD of terminal end flips was determined from only atoms affected by the dihedral changes. Lower nRMSD is better. (B) Histogram of Rwork
and Rfree differences between refined qFit-ligand models and single conformer structures. Negative values indicate a lower R for refined qFit-ligand
models. (C) The distribution of occupancy-weighted, ligand internal energies of qFit-ligand multiconformer ligands relative to single “A”
conformation. Negative values indicate that the multiconformer ensemble has lower internal energy than the single benchmark “A” conformation.
Positive values indicate the multiconformer ensemble has higher internal ligand energies. (D) Ligand EDIAm scores for rerefined single conformer
models against automatically refined qFit-ligand multiconformer models. Higher EDIAm scores are better, with scores greater than 0.8 indicating
that the model is well-supported by the density (shaded area for single conformer models). (E) Examples where the ligand EDIAm was improved
by modeling alternate conformations with qFit-ligand. The 2mFo − DFc maps are shown in blue at a contour level of 1σ.
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ligand multiconformer ensemble is then combined with the
receptor and refined with phenix.ref ine.
We calibrated qFit-ligand on synthetic data calculated from

the benchmark set at varying resolutions and occupancies
(Supporting Information, Materials and Methods, Figure S3).
To create starting models we deleted the alternate “B”
conformation of the ligand, set the occupancy of the “A”
conformation to 1.0, and rerefined against the deposited
structure factors to reposition the “A” conformation as the only
modeled conformation.
We first determined optimal sampling parameters for qFit-

ligand, balancing accuracy of the results and computational
demands, measured by the minimum normalized RMSD
(nRMSD, Supporting Information, Materials and Methods,
Figure S3) between qFit-ligand generated conformations and
the benchmark B conformation. RMSDs between the A and B
conformers range from 0.22 to 4.86 Å across the benchmark
set. nRMSD controls for this large variation by normalizing the
RMSD between qFit-ligand generated conformations and the B
conformer by the RMSD between A and B. nRMSD values
range from 0 to 1, with values closer to 0 indicating better
performance. To compare performance, we report the median
nRMSD of the benchmark set for different resolutions and
occupancies. Our analysis suggested that sampling two torsion
angles simultaneously at 6° intervals gave the best result across
resolutions and occupancies while limiting computational costs
(Supporting Information, Figure S4).
Benchmarking qFit-ligand showed performance differences

across category, resolution, and true occupancy. We evaluated
the performance of qFit-ligand for each category of conforma-
tional heterogeneity (Figure 3B,C). At a resolution of 1.60 Å
and equal occupancies for the A and B conformer, the median
nRMSD is 0.11 for terminal end flips, 0.18 for ring flips, 0.37
for branched ligands, and 0.69 for displaced ligands (Figure
3B). Unsurprisingly, qFit-ligand performance decreased with
increasing complexity of conformational heterogeneity.
The resolution dependence is more complex, however, with

better performance of qFit-ligand at an intermediate resolution
of 1.60 Å (Figure 3C,E). We attribute this to more sharply
defined density peaks at high resolutions relative to
intermediate resolutions. Undersampling of conformations
during ligand building can result in failure to accurately hit
the density peaks at high resolution, thereby leading to
suboptimal scores of electron density-based measures.
The performance of qFit-ligand is sensitive to the occupancy

of the alternate conformation, indicated by an increasing
median nRMSD for lower occupancies of the B conformation
(Figure 3D,E). At occupancies of 0.2 and below, the alternate
conformer was rarely detected at any resolution. While qFit-
ligand samples conformations close to the alternate conformer,
evidenced by favorable (low) nRMDS before final rescoring
(Supporting Information, Figure S4), selecting them at low
occupancies would increase the false positive rate (data not
shown).
Finally, note that the qFit-ligand multiconformer ensemble

collectively explains the density best. In virtually all cases,
density profile contributions from all ligand conformers are
required to match the experimental profile. Overlapping
ensemble members evaluated in isolation generally return
suboptimal density fitting statistics.
qFit-ligand Reidentifies Low Energy Alternative

Conformations in Experimental Data. Next, we applied
our method to the experimental benchmark data set for cases

with resolution better than 2.20 Å (73 cases), with only the “A”
conformation retained in the rerefined starting model (Figure
4). qFit-ligand performance with real data followed the trend
we observed with simulated data: localized conformational
disorder like terminal end flips and ring flips were determined
with higher accuracy than branched or displaced disorder. In
the case of terminal ends, only one or two atoms report on the
distance between alternate conformations, but the nRMSD is
dominated by small coordinate shifts distributed over the
entire ligand. Despite a median nRMSD of 0.56 for terminal
ends, the median nRMSD for only the “reporting” atoms is less
than 0.30 (Figure 4A; all RMSDs reported in Supporting
Information, Figure S5). Consequently, 13 out of 17 terminal
end flip qFit-ligand results were sufficiently accurate to
recognize the benchmark alternate conformer. Similarly, qFit-
ligand determined ring rotations to within a median nRMSD of
0.27. However, the median nRMSD for branched cases is 0.78
and for displaced cases is 0.87. If we conservatively designate a
qFit-ligand result with more than one conformation and
nRMSD > 0.6 as a false positive (Supporting Information,
Figure S6), the false positive rates for each category are 29%
(terminal flip), 14% (ring flip), 67% (branching), and 85%
(displaced) (see Discussion section regarding false positives).
The distribution of Rfree values of fully automated refined

qFit-ligand models were nearly identical to that of the single
conformer ligand models (qFit-ligand x = 0.2043, single
conformer x = 0.2048, p-value = 0.46, two-sided t test) and
statistically indistinguishable from the deposited, manually
curated multiconformers (x = 0.2038, p-value = 0.51) (Figure
4B, Supporting Information, Figure S7, Table S2). The qFit-
ligand multiconformer models improved (worsen) Rfree in 53%
(47%) of cases compared to single conformer ligand models.
The Rfree value alone is generally not sufficiently sensitive to

detect if a multiconformer model is, collectively, supported by
the electron density. Therefore, as an independent validation in
addition to the RSCC in the qFit-ligand algorithm, we
calculated the electron density support for individual atoms
(EDIAm) score.36 The EDIAm score quantifies how well a
group of atoms is supported by the electron density (Materials
and Methods). EDIAm scores indicated that the qFit-ligand
models improve agreement with the electron density in 63% of
cases compared to a single conformer model (Figure 4D) and
overall were within 0.2 of those of single conformer models. In
cases where deposited models were well-supported by the
electron density (EDIAm > ∼0.8), qFit-ligand models generally
increased EDIAm compared to single conformer models, in
some cases even improving the deposited model (Figure 4D,E,
3oik). Unsurprisingly, EDIAm scores correlated with the
categories of conformational disorder; branched or displaced
ligands had lower EDIAm scores. Nonetheless, even in those
challenging cases, automated qFit-ligand multiconformers
EDIAm scores are on par with those of single-conformer
models while alerting to the presence of conformational
heterogeneity (Figure 4E, right-hand panels; Supporting
Information, Figure S15). We emphasize that Rfree and
EDIAm values from fully automated modeling generally
improve with manual refinement.
To further evaluate the quality of qFit-ligand multiconformer

models, we examined internal ligand energies, ignoring
interactions with the receptor. Although qFit-ligand does not
observe restraints in modeling, the quality of qFit-ligand
multiconformer models as measured by their internal energy
was excellent. We found a median conformationally averaged
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excess energy of only 0.35 kcal/mol (Supporting Information,
Figure S16, Table S2,), i.e., qFit-ligand multiconformer models
were, on average, nearly indistinguishable from that of the
rerefined single “A” conformation in our benchmark set.
Interestingly, automatically building a qFit-ligand multicon-
former model in some cases substantially reduced the ligand
energy compared to the single “A” conformation. For example,
for acyliminobenzimidazole inhibitor 36 in complex with
human anaplastic lymphoma kinase,37 a series of concerted
dihedral angle changes resulted in conformations that better fit
the density and reduced the energy by nearly 7 kcal/mol
(Supporting Information, Figure S8). This suggests that a
ligand can accumulate strain energy when it is forced into an
averaged conformation to fit the density. On the other hand,
the distribution of ligand excess energies suggests that ligands
also access higher energy conformations, within a few kcal/mol
from the single conformation (Figure 4D). Indeed, ligands
generally may not bind in the lowest energy conformation or
even adopt a local minimum.38 Favorable noncovalent
interactions with the receptor, buried hydrophobic surfaces,
or desolvation of ordered waters in the binding pocket can
overcome penalties of strained conformations.39,40 Thus,
alternate conformations, even at elevated ligand energies,
may reduce the free energy of the receptor−ligand complex.
qFit-ligand Discovers New Alternate Conformations

in the D3R and the Twilight Databases. For prospective
discovery, we first applied qFit-ligand to the 145 crystal
structures in the D3R data set, a high-quality collection of
manually curated protein−ligand crystal structures ranging in
resolution from 1.26 to 2.75 Å, designed for validation and
improvement of methods in computer-aided drug design. Of
the 10 crystal structures in the D3R data set with alternate
ligand conformations, qFit-ligand recovered seven to within a
median nRMSD of 0.24. Four of these overlap with our
benchmark (PDB 4FV3, Figure 5A, and PDBs 4EK6, 4EK8,
4Y6D). We ranked all qFit-ligand multiconformer ligands using
the Fisher z-transformation, a cross-correlation based metric
which measures if alternate conformations are supported by
the electron density (Materials and Methods). Three of the top

four ranked ligands already had a modeled alternate
conformation, and six out of seven recovered multiconformer
ligands ranked within the top 20, indicating that the Fisher-z
transformation is an effective ranking measure. A new alternate
ligand conformation was uncovered by qFit-ligand in the crystal
structure of the E166A mutant of Serratia fonticola
carbapenemase (PDB 4EV4; new PDB 6DMH) from the
D3R data set (Figure 5B). The terminal propanol functional
group of a bound meropenem intermediate adopts a previously
undetected conformation. Thus, qFit-ligand recovered 70% of
ligand alternate conformations and even revealed a new
alternate conformation in highly scrutinized experimental data
(qFit-ligand multiconformer models of prospective cases can be
found in Zenodo; DOI: 10.5281/zenodo.1256262).
We also applied qFit-ligand to a subset of the Twilight data

set. The Twilight data set represents ligand structures in the
PDB poorly supported by the electron density map, potentially
indicating conformational disorder in the map, or incorrectly
modeled ligands. We applied qFit-ligand to ligands in the
Twilight database with 15−36 non-hydrogen atoms, resolu-
tions better than 2.0 Å, and a correlation coefficient higher
than 0.6, resulting in 2379 cases over 1168 PDB entries, which
we ranked by Fisher z-score to identify “hits” of unmodeled,
alternate conformations (Supporting Information, Table S3).
We proceeded by manually inspecting the top 10% of cases.
In many cases, the electron density near the ligand was

severely disordered, consistent with the intent of the Twilight
database to flag questionable models of ligands. While qFit-
ligand suggested alternate conformations, their validity could
not unambiguously be confirmed using electron density
measures. Nonetheless, in some instances, significantly
improved receptor−ligand interactions signified plausible
alternate ligand conformations (Supporting Information,
Figures S9, S10, S11).
However, for several crystal structures, qFit-ligand unambig-

uously detected alternate ligand binding conformations. For
example, in the crystal structure of BACE-1, qFit-ligand finds
three conformations (occupancies of 0.32/0.36/0.32) of
inhibitor 5T5 (PDB 5EZX; new PDB 6DMI) (Figure 5C).

Figure 5. Prospective discovery of additional conformations and recovered conformations from the D3R and Twilight data set. (A) The deposited
multiconformer model, qFit-ligand multiconformer model, and manually edited multiconformer model of ERK2 (PDB 4FV3; new PDB 6DMG).
(B) Single conformer and qFit-ligand multiconformer models of Serratia fonticola carbapenemase E166A mutant with the acylenzyme intermediate
of meropenem (PDB 4EV4; new PDB 6DMH). (C) Prospective application of qFit-ligand to inhibitor 5T5 of BACE-1 (PDB 5EZX; new PDB
6DMI). Single conformer and qFit-ligand multiconformer models shown. (D) Overlay of multiconformer model of inhibitor 5T5 (green) with
inhibitor 5T6 (magenta) (PDB 5EZZ). Electron densities are shown at 1.5σ (blue) and 0.3σ (purple). Positive (green) and negative (red)
difference densities are shown at +3.0σ and −3.0σ, respectively. All structures shown have been refined using Phenix.
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These conformations show the potential to engineer a ligand
that can accommodate strong hydrogen bonding interactions
to R189 and W137. In the single conformer model, one of the
difluoromethoxy fluorines of the ligand and the amino group of
R189 interact weakly through a 3.0 Å hydrogen bond.41 Our
multiconformer model shows that the ligand can adopt a
position where strong hydrogen bonding between these groups
occur (i.e., shorter contact distances), although at the expense
of sacrificing a favorable hydrogen bonding interaction to
W137. In addition, one of the qFit-ligand conformations turns
a nonideal hydrogen bond geometry in the crystal structure
between the difluoromethoxy oxygen and amino group of
W137 into an ideal geometry. Strikingly, the difluoromethoxy
group of BACE-1 inhibitor 5T6 (PDB 5EZZ) has a binding
conformation that exploits this same hydrogen bonding
interaction with W137 sampled by 5T5 at low occupancy
(Figure 5D).42 These insights could be used to create a new
ligand with branching substituents that can simultaneously
form strong hydrogen bonding interactions with R189 and
W137 in hopes of increasing binding affinity.
qFit-ligand Identifies Widespread Conformational

Heterogeneity in BRD4 Ligand. In another notable
example from the Twilight data set, qFit-ligand identified a
minor, unmodeled population of inhibitor compound
BDOIA383 bound to bromodomain-containing protein 4
(BRD4), a BET (bromodomain and extra terminal domain)
and BRD (Figure 6A, PDB 5CFW; new PDB 6DMJ). BRDs

are small, epigenetic “readers”, which recognize and bind
histone acetylated lysine (AcK).43 BRDs can thereby epigeneti-
cally control gene transcription and have recently emerged as
important drug targets.44 The human genome contains 61
BRDs, distributed over 46 diverse proteins.43 Several potent
small-molecule inhibitors for BRD4 have been structurally
characterized, but designing modulators selective between
BRD4 and CREB binding protein (CBP) has proved
challenging.45−47

The BRD4-BDOIA383 example highlights how alternate
conformations can expose molecular surfaces away from the
primary recognition site that could be exploited for selectivity.
Inspection of the major population of BDOIA383 bound to
BRD4 revealed that it is stabilized by a crystal contact between
the BDOIA383 morpholine oxygen and the K91 carbonyl
(Figure 6A). By contrast, the minor conformation does not
engage in crystal contacts and buries nearly 6% more ligand
solvent accessible surface area (3115 Å2) than the major
conformation (3302 Å2) (Figure 6B). Additionally, the minor
conformation interacts with D145 at the N-terminus of helix
δC (Figure 6A,B). Interestingly, compound BDOIA383 in
complex with CBP BRD revealed a rotation of the isoxazole-
benzimidazole bond by 180°, exposing the phenethyl group to
substituted R1173 at the δC N-terminus46 (PDB ID 5CGP),
occupying the space of the qFit-ligand minor morpholine
conformation in BRD4. Subsequent ligand modifications

Figure 6. Prospective application of qFit-ligand to BRD compounds (A) Single conformer crystal structure, qFit-ligand multiconformer and
manually edited multiconformer models including alternate conformations of Asp145 and compound BDOIA383 bound to BRD4 (PDB 5CFW;
new PDB 6DMJ). (B) Protein−ligand interactions of the major, crystal-contact stabilized “A” and minor “B” BDOIA383 conformations of the final
qFit-ligand model (A). (C) Single conformer crystal structure, qFit-ligand multiconformer and manually edited multiconformer models of a
isoxazolyl-benzimidazole ligand bound to CBP BRD (PDB 4NR5; new PDB 6DMK). (D) Single conformer and qFit-ligand multiconformer models
of ligand 9BM bound to BRD4 (PDB 4BW3; new PDB 6DML). Viewing orientation differs from parts A and C to clearly show ligand alternate
conformations. (E) Ligand S5B’s single binding conformation in BRD2 (PDB 4AKN). Electron densities are shown at 1.5σ (blue) and 0.3σ
(purple). Positive (green) and negative (red) difference densities are shown at ±3.0σ. Distances in Ångstroms.
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strengthened these interactions, leading to increasingly
selective CBP modulators.
Flipped binding modes between BRD4 and CBP had been

observed earlier with a bound isoxazolyl-benzimidazole ligand,
also leading to improved selectivity.47 Strikingly, in this case
too, qFit-ligand identified a minor conformation in the CBP
complex structurally close to the BRD4 bound conformation
(Figure 6C). Because selectivity is often achieved by leveraging
unique structural ligand−receptor interactions, identifying
alternate ligand conformations may help profile auspicious
ligand−receptor secondary molecular recognition sites.
Application of qFit-ligand to all 126 BRD2−4 crystal

structures in the PDB (deposited in Zenodo; DOI: 10.5281/
zenodo.1256262) suggests that differential binding modes and
ligand heterogeneity are remarkably ubiquitous (Materials and
Methods). Visual inspection and manual curation revealed 12
new binding conformations detected with high confidence
(Supporting Information, Figure S12) and an additional 24
with possible alternate conformations (Supporting Informa-
tion, Table S5, Figure S13). The alternate conformation
detected by qFit-ligand in the crystal structure of BRD4 with
ligand 9BM48 (phenyl ring flip) is the same conformation
observed in the crystal structure of BRD2 with ligand S5B,49

further supporting the idea that ligands can sample a second,
minor pose which becomes dominant after small chemical
modifications to their structure. These observations and the
pervasiveness of ligand heterogeneity in BRDs suggest that the
potential of alternate ligand conformations for structure-based
drug design is significantly undervalued.

■ DISCUSSION
Ligand conformational heterogeneity is widespread in X-ray
data deposited in the PDB but underreported in the absence of
automated and reliable computational methods. qFit-ligand is a
new method to model a parsimonious multiconformer ligand
in crystallographic electron densities. We formulated the
challenge of identifying an ensemble that collectively best
agrees with the electron density, from up to tens of thousands
of candidate conformations, as a stepwise combinatorial
optimization problem. qFit-ligand relies on exhaustive sam-
pling, iteratively restrained by the electron density, to fully
cover the conformational space of each ligand. Our method
was designed to provide a measure of statistical confidence for
model selection in cases of ligand conformational hetero-
geneity, separating the contributions between harmonic
displacement and multiple conformations.
We highlighted three examples of previously unmodeled

alternate ligand conformations obtained from prospective
application of qFit-ligand to the D3R and Twilight data sets
(Supporting Information, Table S4 lists all prospective
discoveries). Strikingly, even the highly curated D3R data set
revealed a previously unmodeled alternate conformation.
Targeted application to a single bromodomain receptor
suggests that as many as 29% of receptor−ligand crystal
structures could have alternate ligand conformations. This is a
likely conservative estimate of the accessible ligand conforma-
tional landscape in protein crystal structures. The portrait of
rigid receptors and ligands is exacerbated by the common
practice of collecting X-ray crystallographic data at cryogenic
temperature (100 K). Although cryocooling increases the
precision of structure determination by reducing thermal
motions, cooling affects the conformational distribution of
more than 35% of side chains in proteins50 and has been found

to alter ligand binding and abolish transient binding sites
observed at room temperature.51 Applying qFit-ligand to room
temperature X-ray crystallography data, which can shift the
equilibrium of receptor−ligand conformational ensembles, may
reveal additional minor ligand binding poses that are typically
masked in cryogenic data.
qFit-ligand conformational strain energies after refinement

were nearly indistinguishable from those of the manually
curated benchmark set, signifying that its multiconformer
models are chemically accurate. Our analysis showed that qFit-
ligand conformations were nearly isoenergetic. Less often we
identified a ligand for which the qFit-ligand multiconformer
model significantly reduced strain energy, suggesting that
conformational averaging of the single conformer model had
led to a poorly modeled ligand to fit the density. Changes in
the free energy of the ligand−receptor complex will give a
more complete picture of the effect of multiconformer ligands
but require a model of the receptor response to binding, which
is beyond the scope of the current study. Ironically,
multiconformer ligands are commonly filtered out of major
test sets for development of docking and conformational
sampling approaches but may be a more “trustworthy”
representation of the underlying data.52 Multiconformer ligand
models can therefore address important challenges in ligand
validation and deposition in the Protein Data Bank (PDB).53,54

Several aspects of qFit-ligand could be improved in the
future. First and foremost, modeling the joint conformational
ensemble of the binding site residues and ligand will be a major
step forward toward a better understanding of receptor
response to ligand binding. The potential of this approach is
underlined by our finding that 12% of structures in the Twilight
data set already present alternate receptor conformations
within 5 Å of the ligand. While ultimately an accurate
thermodynamic distribution for receptor−ligand conforma-
tions is desired, our approach determines a parsimonious
ensemble of conformations that is supported by the data alone.
These conformations can provide a starting point for MD
simulation to obtain a better estimation for a thermodynamic
distribution. Second, while in principle our conformational
sampling approach could be combined with a sophisticated
force field,55 relying on energy restraints in the discovery stage
can result in increased computational cost and can risk
excluding promising candidate conformations owing to
imperfect sampling and steep potential energy gradients.
Rather, we advocate including energy restraints in refine-
ment.31 Other conformational search methods with force
fields, such as Schrodinger’s ConfGen56 and MacroModel,57

OpenEye’s Omega,58 MOE,59 and many other freely available
tools,60 could independently validate results in the absence of
data.
Third, the false-positive rates can likely be decreased. Several

techniques are available to guard against overfitting. For
example, the BIC criteria weighs increased model complexity
(number of conformations) to a better statistical fit. Terminal
ends and ring flips had low false positive rates, whereas those
for the branched and displaced categories were elevated. qFit-
ligand recovered terminal end and ring flips to within an
nRMSD of 0.27. Disordered parts of branched ligands were
often solvent-exposed and therefore more difficult to recover.
Accounting for partial occupancy of ligand, receptor con-
formers, and solvent will be required to reveal details at the
solvent interface. Displaced ligands are not “anchored” in the
binding pocket and are among the most challenging to recover.
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An nRMSD of 0.5 or below often sufficed for further
refinement, but even nRMSDs up to 0.75 sometimes required
only minor manual adjustments, depending on the absolute
RMSD between states. For example, ring flips involving
rotationally symmetric atom species cannot be uniquely
assigned based on the electron density alone, leading to
inflated RMSD measures, which are easily adjusted (Support-
ing Information, Materials and Methods, PDB 3P4V). All
benchmark qFit-ligand results were obtained with the same
parameters. In practice, specific problems will dictate tailored
settings. For example, selecting finer sampling steps or larger
volumes for rigid body searches could give better results at the
expense of increased computational time (Supporting In-
formation, Figure S17). Nonetheless, on our benchmark set,
the fully automated qFit-ligand multiconformer models were
supported by real-space validation measures, and their Rfree
values were statistically indistinguishable from the manually
curated set. While these measures cannot perfectly distinguish
false positives, structural models consistent with the reflection
data create a pool of testable hypothesis, which can be
evaluated in drug discovery using ligand structure activity
relationships or protein residue mutations.
Fourth, the partial occupancy of an “unbound”/apo state

could be explicitly considered. Weak, overlapping densities
originating from partially occupied receptor and ligand
conformations in the binding pocket are often difficult to
tease apart, owing to a vast number of possible ligand
conformations to be evaluated, even in sterically constrained
binding cavities. Partially occupied water molecules and
crystallographic additives often further confound modeling
efforts. In these challenging cases, difference densities from
alternate states are often incorrectly resolved by waters.
Promising new approaches such as PanDDa61 can reveal the
electron density of partially occupied states; however, it
requires a large number of “ground state” crystal structures to
reliably compute their contribution to the partially occupied
state. Our method is highly complementary, and PanDDa
maps could even be used as input to qFit-ligand. Synergy of
these approaches holds the promise to enable efficient,
accurate, and unbiased discovery of alternate fragment and
ligand binding poses. This is increasingly important in view of
the ability to structurally screen hundreds of candidate ligands
within hours on modern synchrotrons. The combination of
these methods may help remove temptation to fill all difference
density with waters while avoiding the overly optimiztic
modeling of partial occupancy ligands that are highlighted by
the Twilight Database.
Even with these improvements, it is important to be

sensitive to concerns of overfitting when fitting additional
conformations into electron density maps. We have guarded
against this possibility in multiple ways: (1) we identify
conformations similar to “expert” manual modeling in
experimental test sets, (2) in synthetic data sets, the Fisher z
score identifies a statistically significant parsimonious set that
correspond in number to the underlying “true” number of
conformations, and (3) traditional global metrics (Rfree) and
new local metrics (EDIA) do not identify major concerns.
Furthermore, on the prospective set (1), new interactions are
identified that make biochemical sense, (2) we identified
similar conformations in ligands that differ by only a few
atoms, and (3) visual inspection confirms that Fo − Fc
difference density is reduced. This last point underscores
how visual inspection is important for eliminating false

positives and, as shown here, for manually improving the fit.
Furthermore, these checks are especially important for
verifying the correct stereochemistry. Ultimately, biochemical
tests with mutations or altered ligands are the best forward
validation.
Finally, as the particle size and resolution limitations of

single-particle cryoelectron microscopy (cryo-EM) continue to
improve, that technology will have a major impact on drug
discovery.62 High-throughput and automation approaches,63

combined with the size of the complexes in cryo-EM structure
determination, will soon turn careful modeling of protein and
ligand structural heterogeneity into a major bottleneck. qFit-
ligand can provide an efficient, automated modeling approach
at the amino acid length scale, as EM maps are immutable
during modeling and refinement. Beyond applications to drug
discovery, as time-resolved serial crystallography is rapidly
becoming routine at X-ray free electron lasers and even
synchrotrons,64 qFit-ligand can help resolve minor populations
of structural protein−ligand intermediates in light-driven
pump−probe65 or structural enzymology “mix-and-inject”
experiments.66,67

■ CONCLUSIONS

Revealing the full receptor−ligand conformational ensemble
can help drug design by exploiting the balance between
entropy and enthalpy in compound design68,69 and by
characterizing the effect of prerigidifying ligands on affinity.70

Equally important, it can help the rational design of ligand
selectivity by exposing accessible molecular surfaces unique to
their intended targets.71 In the future, full integration of qFit-
ligand with qFit could reveal the structural reorganization of
binding pockets and allosteric signal propagation in the
receptor upon ligand binding.21,72 Our qFit-ligand open source
software, available from https://github.com/ExcitedStates/
qfit_ligand, provides promising, new starting points for ligand
optimization and structure-based drug discovery. However,
communication between structural biologists, computational
chemists, and medicinal chemists remains a requisite for
successful, rational design.

■ MATERIALS AND METHODS
Survey of the Protein Data Bank and benchmark creation.

All structure coordinate files were downloaded from the PDB.
Structures determined by X-ray crystallography were checked for
HETATM entries (ligands) containing at least two different altloc
identifiers with identical chemical composition. We aim to character-
ize conformational heterogeneity of ligands that are (1) drug-like and
(2) have multiple internal degrees of freedom. Ligands with fewer
than 15 non-hydrogen atoms were therefore discarded as were
covalently linked ligands. This resulted in a list of 2611 ligands
divided over 1845 PDB files. The list was further pruned to exclude
ligand flips, i.e., alternate conformations that do not have a common
cluster of atoms in space, and alternate conformations consisting
exclusively of ring puckers as our algorithm was not designed to
sample these types of conformational changes. We then selected
receptors and ligands of pharmaceutical interest, resulting in a final
benchmark set of 90 cases that refined against the deposited structure
factors and CIF files. As the quality of X-ray data affects model
building and refinement, we verified that low-resolution X-ray data
cutoff and data completeness were within acceptable ranges
(Supporting Information, Table S1). Each case was rerefined using
phenix.refine v1.11 with the following parameters

For PDBs Better than 1.5 Å. optimize_ xyz_ weight = true
optimize_ adp_ weight = true optimize_ mask=True main.number_
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of_ macro_ cycles=10 adp.individual.anisotropic=‘not water and not
element H’ adp.individual.isotropic=“water or element H”
For PDBs Worse than 1.5 Å. optimize_ xyz_ weight=true

optimize_ adp_ weight=true optimize_ mask=True main.number_
of_ macro_ cycles=10 adp.individual.isotropic=all
Single conformer ligand models were created by removing the

ligand’s “B” conformation from the original deposited PDB model and
resetting the occupancy of the “A” conformation to 1. The single
conformer models were re-refined as above.
The qFit-ligand Approach. The qFit-ligand algorithm takes as

input the initial structure of a refined single conformer ligand modeled
in the electron density, a real-space map (2mFo − DFc) in ccp4 format
and its resolution and, optionally, the receptor and other ligand and
solvent atoms for clash avoidance. The qFit-ligand algorithm starts by
scaling the map electron density values to approximate absolute scale,
using only the density under the footprint of the receptor. Next, the
algorithm calculates an Fc map corresponding to the receptor and any
other atoms in the crystal not part of the ligand. This map is
subtracted from the experimental density. Map values below the mean
are set to zero to prevent building into spurious density. We call the
resulting map the target map.
Next, qFit-ligand determines rotatable covalent bonds of the ligand

and rigid groups of atoms. Covalent bonds are determined based on
proximity; i.e., if the distance between two atoms is smaller than their
combined covalent radius plus 0.5 Å, the atoms are considered
covalently bonded. It partitions the ligand into rigid groups of atoms
(i.e., groups of atoms without internal DoFs) as follows: It constructs
a graph G = (Vm,Em) such that the vertices Vm represent atoms, and
edges Em represent covalent bonds. Next, members of Em that (1) are
in a ring system, and (2) edges (u,v) in Em where u or v has degree
one are edge-contracted. Hybridization states (partial double bonds)
are ignored in the current implementation. A covalent bond is
rotatable if it is not part of the same ring system. After edge
contraction, each edge Em ultimately corresponds to a rotating bond
(one degree of freedom) and each vertex Vm corresponds to a
collection of atoms that form a rigid body. Thus, rigid groups of atoms
do not have internal, rotatable covalent bonds (Supporting
Information, Figure S2).
Analogous to existing crystallographic model building procedures,73

qFit-ligand iteratively generates and ranks a large number of candidate
ensembles by scoring against the electron density and retaining a
small ensemble (Figure 3A and Supporting Information, Figure S2). It
uses modern statistical routines for subset selection in regression
models by MIQP.74,75 qFit-ligand builds up candidate ligand
conformers starting from each rigid group of atoms in turn, similar
to the approach implemented in FlexX/S76 (Supporting Information,
Figure S2). To prevent a combinatorial explosion, qFit-ligand
iteratively samples and selects candidate conformers for successive
rigid groups. The first sampling iteration consists of a local rigid body
search of the starting group within a box with an edge size of 0.4 Å at
a 0.1 Å interval and 10 randomly generated orientations at a
maximum rotation angle of 10° (1250 conformations). An MIQP step
(details below) selects up to five occupancy-weighted candidate
positions that, collectively, minimize the real-space density residual of
the rigid group. For each selected conformation, subsequent iterations
each sample N (user-defined, default 2) torsion angles with a user-
defined (default 6°) step size to add N successive rigid groups
simultaneously. Clash detection is divided into internal clashes, i.e.,
clashes within a single ligand conformer, and external clashes, i.e.,
clashes between a ligand conformer and the receptor. Clashing
conformations, both internal and with the receptor (using an efficient,
O(1), spatial hashing algorithm), are detected and removed from the
set before selection with MIQP. Bond lengths and angles are kept
fixed during the whole procedure.
After each sampling iteration, the optimal occupancies of generated

conformations are determined as follows. Each conformation is
transformed into a density given by

r r f s Bs rs s s( ) 8/ ( ) exp( ) sin(4 ) d
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where r is the position compared to the atom position, f(s) is the
atomic scattering factor as a function of the momentum vector of the
atom, B is the isotropic B-factor, and smin and smax are the minimum
and maximum momentum vector length. For computational
efficiency, a lookup table is created for each atom at an interval of
0.01 Å.

A combined mask is calculated by forming the union of all
individual conformation masks, using a resolution dependent radius,
where r = 0.5 + R/3. Density values under the footprint of the
resulting mask are extracted and used as input for Quadratic
Programming (QP) and Mixed Integer Quadratic Programming
(MIQP) to select up to five conformations that best represent the
density data locally. QP and MIQP solvers guarantee the global
optimal occupancy of each conformation by minimizing the real-space
residual given by
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where ρo is the target map, ρi is the calculated density of conformer i,
wi is the weight, or occupancy, of conformer i, and 0 ≤ t ≤ 1 is a
threshold on the occupancy. If t = 0, the constraints enforce non-
negativity for the occupancies, and the program is a QP. The
combined occupancy cannot exceed unity. Selecting t > 0 introduces
sparsity or threshold constraints, which turns the program (1) into a
MIQP. To reduce computational complexity, relevant conformations
are preselected using QP and used as input for a subsequent round of
MIQP.23

After the ligand has been fully built up starting from each cluster, all
resulting conformations are pooled together for a final round of
rescoring. The individual Pearson product-moment cross-correlation
(RSCC) is calculated for each individual conformation. Conforma-
tions with RSCC score less than 0.9 times the highest correlation, and
redundant conformations for which all pairwise atom distances are
within those of previously accepted conformations, are discarded.
Finally, a parsimonious multiconformer model is created as follows.
An MIQP step at an occupancy threshold of 0.20 is performed on the
remaining pool of conformations. Visual inspection of conformers at
minimum occupancy of 0.2 generally indicated density contours
exceeded noise levels.77 For very high resolution data sets, this
threshold can be reduced. The resulting selected conformations are
ranked by RSCC value, and starting from the conformation carrying
the highest RSCC, additional conformations are added if the RSCC
increases under the combined footprint and else discarded. This is
performed iteratively until self-consistent, i.e., all conformations
increase the RSCC under the combined footprint. The output of qFit-
ligand consists of all conformations before the final rescoring round
and the sparse, occupancy-weighted multiconformer ligand model.

qFit-ligand is implemented in Python 2.7 and relies on the open-
source NumPy, SciPy, and CVXOPT78 packages and the freely
available Community Edition of IBM ILOG CPLEX, with added
modules from the mmLib Python toolkit.79 qFit-ligand is released
under the MIT license and can be downloaded free of charge from
https://github.com/ExcitedStates/qfit_ligand, where additional doc-
umentation and installation instructions can be found.

Benchmarking qFit-ligand. Simulated structure factors were
generated from the rerefined benchmark set using phenix.fmodel at
1.0, 1.3, 1.6, 2.0, and 2.5 Å resolution. Occupancy of the B-conformer
was varied from 0.5 to 0.0 occupancy in 0.1 decrements, requiring that
the combined occupancy of the multiconformer ligand summed up to
unity. A random error of 10% was added to the amplitudes, a fraction
of 0.1 was used for Rfree flags, and we selected ksol = 0.4 and bsol = 45
Å2. The B-factor of each ligand atom was adjusted by 10 times the
difference in real and simulated resolution, i.e., the B-factor was
inflated for lower resolution simulated data and sharpened for high
resolution data. The resulting mtz files were converted into ccp4
density files using phenix.mtz2map.
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For each resolution and occupancy combination, qFit-ligand was
run on the full benchmark set using different sampling parameters:
sampling 1 degree of freedom (DoF) using a torsion sampling interval
of 1 degree, and sampling 2 DoFs simultaneously using a torsion
sampling interval of 6 degrees. To obtain a uniform metric for
evaluating the performance of qFit-ligand, we therefore analyzed the
results by calculating a normalized RMSD, calculated in the receptor
frame of reference:80,81

C
B C
A B

nRMSD min
RMSD( , )
RMSD( , )i

i=

between the output structures Ci of qFit-ligand and the ligand B
conformer used during the structure factor generation, normalized by
the RMSD between the A and B conformer. Conformers Ci for which
nRMSD < 0.5 are more similar to the B conformer than the A
conformer. The nRMSD measure puts equal weight on each
benchmark case by normalization while providing uniform thresholds
for determining success (Figure S14). We note that the RMSD (and
therefore also the nRMSD) measure has important limitations,
affecting the results. For example, because RMSD is typically
calculated between unique points, it fails to account for symmetric
transformations within a ligand, e.g., a 180° flipped acidic group or
aromatic ring, thus introducing additional error. Unfortunately, to our
knowledge, there is no readily available method that addresses this
issue. While a low nRMSD guarantees a good solution, a relatively
high nRMSD can still suggest an alternate conformation that requires
some manual adjustments, including symmetric transformations.
We subsequently evaluated the performance of qFit-ligand for each

category in the benchmark set, at simulated resolutions and
occupancies, after refinement with PHENIX v1.11 using the same
protocol as stated above for rerefinement. The final selection stage
was optimized heuristically by finding a balance between maximizing
sensitivity and minimizing false-positives against the benchmark.
D3R and Twilight Database Investigation.We downloaded the

D3R (https://drugdesigndata.org/about/datasets) and Twilight
(http://www.ruppweb.org/twilight/newligands-2016.tsv.bz2) data-
bases deposited in 2016. For all cases, structure coordinates and
2mFo − DFc maps were downloaded from the PDB. For the Twilight
cases, we discarded structures with a reported resolution worse than
2.0 Å and ligands consisting of less than 15 and more than 35 non-
hydrogen atoms and a cross-correlation score less than 0.6. The
resulting qFit-ligand multiconformer models were ranked on the
Fisher z-transformation score. The Fisher z-transformation is a
mapping of the RSCC r so that its distribution is approximately
normal. It was previously applied to significance testing for cryo-EM
rigid body fitting82−84 and is given by
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r

1
2

ln
1
1

= +
−

where r is the RSCC. The standard error of z is given by

N
1

3
σ =

−

where N represents the number of independent observations,
approximated by N = MV/(c × R), where MV represents the
molecular volume of the ligand in Å3, R the resolution in Å, and c = 1
Å2, a constant.83 Starting with the conformer with the highest RSCC,
additional conformations are added. Our approach is based on
hypothesis testing of the normally distributed, random variable. For
each additional conformer, the z-score is recalculated for both the
starting conformation and the combined multiconformer under the
footprint of the latter. The resulting difference in z-score is divided by
its standard error to provide a resolution and size corrected measure
of significance for the increase in cross-correlation, where higher is
better. The test statistic is

z z
i

i

z

bestξ
σ

=
−Σ

where Zbest is the recalculated z-score of the single conformer with the
highest RSCC, and z∑i is the z-score of the ith combined
multiconformer. The highest z-score increase found during this
iterative process is reported in Supporting Information, Table S3.

EDIAm and OPIA Calculation.
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where Ux is a conformer of the ligand U, a is an atom in Ux with an
EDIA score of EDIA(a), and occ(Ux) is the occupancy of that
conformer. The OPIA of multiconformer mode was calculated as an
occupancy-weighted average of the OPIA of each conformer.

Ligand Energy. To assess ligand conformational energies, we
carried out constrained minimizations (flat bottom width of 0.2 Å) of
all ligands (from single conformer and qFit-ligand multiconformer
models) using Jaguar85 with the M06-2X functional86,87 and 6-
31G(d,p) basis set, except for bromine atoms, which used the LAV2P
basis set. Gas-phase energies of ligand conformations generated by
qFit-ligand (which were subsequently refined) were compared to
ligand conformations in the single conformer model (i.e., 0 kcal/mol).
The relative energies of each alternative conformation in the qFit-
ligand multiconformer model were multiplied by their respective
occupancies, then summed to arrive at the occupancy-weighted ligand
energy.
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