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Abstract 
How do related proteins with a common fold perform diverse biological functions?  Although the 
average structure may be similar, structural excursions from this average may differ, giving rise to 
allosteric rewiring that enables differential activity and regulation.  However, this idea has been difficult 
to test in detail.  Here we used the qFit algorithm to model “hidden” alternate conformations from 
electron density maps for an entire protein family, the Protein Tyrosine Phosphatases (PTPs), 
spanning 26 enzymes and 221 structures.  To interrogate these multiconformer models, we developed 
a new algorithm, Residue Interaction Networks From Alternate conformations In RElated structures 
(RINFAIRE), that calculates networks of interactions between flexible residues and quantitatively 
compares them.  We show that PTPs share a common allosteric network which rewires dynamically in 
response to catalytic loop motions or active-site vs. allosteric ligand binding, but also that individual 
PTPs have unique allosteric signatures.  As experimental validation, we show that targeted mutations 
at residues with varying sequence conservation but high network connectivity modulate enzyme 
catalysis, including a surprising enhancement of activity.  Overall, our work provides new tools for 
understanding how evolution has recycled modular macromolecular building blocks to diversify 
biological function.  RINFAIRE is available at https://github.com/keedylab/rinfaire. 
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Introduction 
Allostery is a prevalent regulatory mechanism in biology 1,2, allowing proteins to respond to stimuli 
such as ligand binding at one site by altering their structure and function at another site.  Allosteric 
communication within a protein fold 3,4 may occur through a variety of mechanisms 5, including 
conformational rearrangements of loops and linkers 6,7, shifting networks of side-chain interactions 8, 
and changes in dynamics with an unchanged average conformation 9. 
 
A key question in molecular biophysics is whether allosteric wiring either (i) is a property of a protein 
fold and thus conserved over evolution or (ii) differs between related proteins to diversify 
regulation/function.  Some lines of evidence point to conservation of allostery: statistical coupling 
analysis (SCA) of coevolving amino acids reveals sectors of residues 10 that highlight allosteric sites 11, 
and conformational dynamics are somewhat conserved within a protein fold even when sequence 
diverges 12.  However, smaller-scale fast dynamics, which may play roles in diversifying function, are 
more divergent than larger-scale slow dynamics 13.  Altogether, it remains unclear to what extent 
functionally relevant allosteric wiring is customized in different homologs within the constraints of a 
common fold. 
 
This question is relevant to many protein families, not least of which are the protein tyrosine 
phosphatase (PTP) enzymes.  Many PTPs are validated therapeutic targets for diabetes, obesity, 
cancer, autoimmune diseases, and neurological diseases 14.  Here we focus on the ~37 15 class I 
classical PTPs which are specific for phosphotyrosine (pTyr) moieties in substrate proteins 15,16.  
Despite structural conservation of the PTP catalytic domain (Fig. 1), the average sequence identity is 
only 34.4% (range: 21.7–98.5%), indicating substantial divergence that may manifest as rewired 
allostery.  Consistent with this idea, distinct regulatory domains in different PTPs 17 have been shown 
to regulate the catalytic domain in unique ways, including the α7 helix in PTP1B (PTPN1) 18–21 and in 
the closely related TCPTP (PTPN2) 22, the N-terminal autoinhibitory SH2 domains in SHP2 (PTPN11) 
23–25, and the non-catalytic PTP-like D2 domain in certain receptor-type PTPs 26,27.  Crystal structures 
of different PTPs also reveal distinct patterns of surface features 16,26, suggesting the existence of 
unique, non-orthosteric binding sites.  Indeed, early small-molecule allosteric modulators 28 have been 
reported for PTP1B 18,21,29–31, SHP2 32,33, and STEP (PTPN5) 34.   
 
Despite this promising outlook, many mysteries remain about the evolutionary divergence of allosteric 
wiring in the PTP catalytic domain.  For example, SCA suggested two allosteric sectors shared among 
PTPs 35, but MD (molecular dynamics) analysis suggested divergent allostery based on differences in 
correlated structural motions 36.  Increased clarity about allosteric similarities vs. differences among 
PTPs would aid in developing allosteric modulators that are specific for individual PTPs, helping these 
enzymes shed their reputation of being “undruggable” 37. 
 
Previously, several approaches have been used to elucidate allosteric wiring in related proteins like 
PTPs.  SCA 10,11 generates testable hypotheses about allosteric sectors, but questions remain about 
the physical interpretation of these sectors.  Computational structure-based methods to study allostery 
5 including MD simulations 36,38–41, normal mode analysis (NMA) 42, and machine learning 43 are often 
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too computationally intensive to scale well to large protein families and/or rely on simplified force 
fields.  Experiments like nuclear magnetic resonance (NMR) spectroscopy, cryo-electron microscopy 
(cryo-EM), and site-directed mutagenesis provide direct insights into dynamics and function 20,44, but 
have limited throughput and spatial resolution.  
 
Bridging computation and experimental data, multiconformer modeling from crystallographic electron 
density maps with qFit (Fig. 2a) 45–49 yields parsimonious alternate conformations of protein side-chain 
and backbone atoms.  qFit models are consistent with NMR dynamics data 50 and reveal entropic 
compensation mechanisms from ligand binding 51.  To analyze the complex coupling between spatially 
adjacent alternate conformations in qFit models, previously the CONTACT algorithm used steric 
clashes only; the resulting networks were validated by NMR for the model enzyme dihydrofolate 
reductase (DHFR) 8 and revealed a ligand-dependent signaling mechanism for mPGES-1 52.  
However, CONTACT does not consider interaction types beyond steric clashes, nor does it offer 
machinery to compare networks for related structures, leaving key gaps in its capabilities.  
 
To fill these gaps, we have developed a new algorithm, Residue Interaction Networks From Alternate 
conformations In RElated structures (RINFAIRE).  By using a distance-based approach, RINFAIRE 
implicitly captures a wider range of interactions between alternate conformations, including 
unfavorable steric clashes as well as favorable hydrogen bonds (H-bonds), van der Waals packing, 
and ionic interactions.  RINFAIRE also aligns and scales residue interaction networks (RINs) from 
multiple input qFit models, subsets these RINs based on custom metadata, and quantitatively 
compares different sum networks corresponding to distinct subsets of structures.  We have deployed 
our novel qFit + RINFAIRE computational pipeline to study allosteric networks for all structurally 
characterized PTPs.  Leveraging the growth of the Protein Data Bank (PDB) 53, we studied 221 PTP 
catalytic domain structures spanning 26 distinct PTP enzymes.  Our results reveal how allosteric 
wiring in the PTP catalytic domain changes between well-known global conformational states relevant 
to catalysis, upon binding to active-site vs. allosteric ligands relative to the apo state, and in different 
PTPs with distinct functional and/or regulatory properties.  RINFAIRE is free and open-source 
software, available at https://github.com/keedylab/rinfaire. 
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Results 

Creating a dataset of multiconformer models of the PTP family 
After filtering by resolution (≤ 2.1 Å) and automated re-refinement (see Methods), we assembled 170 
high-resolution crystal structures of PTPs, representing 26 distinct human PTPs plus another 6 
orthologous PTPs from other species (Fig. S1).  PTP1B (PTPN1) is the most represented PTP, 
followed by SHP2 (PTPN11) and bacterial YopH (Fig. 1d).  
 
The PTP structures in our dataset have a substantial degree of sequence and structural conservation 
across the catalytic domain, especially near the active site (Fig. 1a).  The average sequence 
conservation value for residue positions that align with the PTP1B catalytic domain is 49.8%.   
Important loops for catalysis such as the P loop, WPD loop, Q loop, and substrate recognition loop 
(i.e. pTyr binding loop) have especially high conservation across our structural dataset, having 
average conservation of 90.7%, 75.8%, 70.4%, and 70.0% respectively.   
 
Many of the regions that are well conserved in terms of sequence are also well conserved in terms of 
structure (Fig. 1b).  The backbone in the catalytic domain shows relatively little variation overall and 
for the active-site P loop, Q loop, and substrate recognition loop (Fig. 1b).  A notable exception is the 
dynamic WPD loop 21,55 which clusters into three distinct states: predominantly the canonical open 
conformation and closed conformation, with a few examples of an atypically open or super-open 
conformation in a few PTPs such as STEP (PTPN5) and YopH.  Additional domains exist that are 
unique to some PTPs, including SH2 in SHP1/SHP2 and the inactive catalytic domain D2 in some 
receptor-type PTPs (Fig. 1c) 17,26,56. 
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Figure 1: Overview of crystal structures of related PTP enzymes. 
This study uses a dataset of 170 publicly available PTP crystal structures with sufficiently high resolution (≤ 2.1 
Å), representing 26 distinct PTP enzymes. 
(a) Sequence conservation from a structure-based sequence alignment (see Methods), mapped to a 
representative structure of the catalytic domain of the archetypal PTP family member, PTP1B (PDB ID: 1sug)54.  
Key sites are indicated, such as active-site loops and allosteric sites; catalytic residues (Asp181, Arg221, 
Cys215, Gln262, Tyr46; PTP1B numbering) are shown as sticks.  
(b) Structural alignment using Cα backbone atoms for all PTP structures studied here, colored from N-terminus 
(blue) to C-terminus (red).  
(c) Structural alignment using the shared catalytic domain (gray) for all PTP structures studied here that contain 
additional ordered protein domains: C-terminal non-catalytic “D2” domains (green), or N-terminal SH2 domains 
(purple).  
(d) Resolution distribution for all available PTP structures (with resolution ≤ 2.1 Å cutoff).  Different colors 
indicate different PTP enzymes.  Each bin is left-inclusive and right-exclusive except the last bin with both 
inclusive (structures at 2.1 Å are included).  
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Using alternate conformations to generate residue interaction 
networks 
Protein crystallographic electron density maps often reveal “hidden” alternate conformations that are 
unmodeled in the publicly available structures 58.  To better represent the structural heterogeneity 
present in our dataset, we used the automated multiconformer modeling algorithm qFit 45–49 for all 170 
crystal structures in our dataset (Fig. 2a).  qFit increased the average number of alternate 
conformations by 17.7% (from 1.0 to 1.2 conformations per residue).  Based on Rfree and R-gap 
(Rfree-Rwork) (Fig. S3), qFit adds alternate conformations that help explain the experimental data better 
than the original deposited structures and do not overfit the data. 
 
Of the 170 structures, 50 have non-crystallographic symmetry with multiple non-identical instances of 
the PTP catalytic domain.  Following qFit refinement, we separated these instances, resulting in 221 
distinct catalytic domain structures for subsequent analysis. 
 
The qFit models contain many instances of coupled alternate conformations at important sites in the 
structurally conserved catalytic domain.  For example, a deposited structure of the archetypal family 
member PTP1B (PDB ID: 3eax) had a missing alternate conformation at the catalytic cysteine 
(Cys215), as indicated by difference electron density (Fig. 2a).  qFit successfully modeled this new 
rotamer conformation, along with subtle alternate conformations of a sequentially neighboring residue 
and several spatially adjacent residues (His214, Met109, His175) in a β sheet, resulting in diminished 
difference density (Fig. 2a).  
 
We next sought to compute the network of such interactions in each qFit model and compare them 
across all our PTP structures.  To do so, we developed a new computational method called Residue 
Interaction Networks From Alternate conformations In RElated structures, or RINFAIRE (Fig. 2b-c).  
RINFAIRE proceeds in two main stages.  First, in the individual-network stage, a RIN is generated for 
each structure based on interactions between alternate-conformation atoms in residues that are either 
adjacent in space or adjacent in sequence (Fig. 2b).  In contrast to past methods for computing RINs 
from multiconformer models that only modeled repulsive steric clashes 8, RINFAIRE implicitly 
incorporates favorable van der Waals forces, hydrogen bonds, ionic bonds, and other local 
interactions (albeit in a coarse-grained fashion).  Second, in the multinetwork stage, individual RINs 
are aligned based on a structure-based multiple sequence alignment, allowing analogous residues to 
be directly compared across all networks (Fig. 2c).  Once aligned, the networks are log normalized to 
account for differences in numbers of alternate conformations (e.g. due to resolution differences) and 
prepared for comparative analyses including summation per edge and calculation of differences 
between defined subsets (see Methods). 
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Figure 2: RINFAIRE workflow to generate multinetworks from related qFit multiconformer models.   
(a) qFit multiconformer modeling for each structure identifies “hidden” alternate conformations that better explain 
the electron density.  In this example (PDB ID: 3eax) 57, qFit finds previously unmodeled alternate conformations 
for the catalytic Cys215 and several spatially adjacent residues near the active site of PTP1B.  2Fo-Fc density 
contoured at 1 σ (blue mesh); Fo-Fc difference density contoured at +/- 3 σ (green/red volumes).  
(b) The qFit multiconformer model is used by RINFAIRE to construct an individual structure network.  This 
example features interactions between selected residues from panel (a).  See also Fig. S2. 
(c) All of the individual networks are aligned using a structure-based sequence alignment, generating a 
“multinetwork”.  In subsequent steps, an overall sum network can be computed, or sum networks composed of 
subsets of structures can be compared. 
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The consensus allosteric network of the PTP catalytic domain 
To map allosteric connections that are most represented across PTPs, we used RINFAIRE to 
generate a sum network for all PTP structures in our dataset.  We identified the most structurally 
conserved components of this network by restricting to the top 5% of edges (by edge weight), 
resulting in a pruned sum network of 89 nodes and 120 edges with a cyclical topology (Fig. 3a-b).  To 
identify important residues in this network, we used weighted degree, i.e. the sum of edge weights for 
each node.  Hereafter in this manuscript, we refer to weighted degree as simply degree.   
 
Met109 (PTP1B numbering) has the highest degree overall.  Although this residue has not been 
previously highlighted as key to catalysis, it is 100% conserved across human PTP sequences 17, and 
in our network is connected to several residues that bridge to the catalytic Cys215 (Fig. 2a), the 
active-site E loop, and the N-terminal hinge point of the catalytic WPD loop (Fig. 2a), whose dynamic 
motions are critical for catalysis in PTPs 59.  The next highest-degree residues are at key functional 
sites and/or exhibit dynamic behavior (Fig. 3a-b).  Ser70 is near the substrate recognition loop and P 
loop, in a dynamic region based on hydrogen-deuterium exchange in solution 60.  Met98 connects with 
several residues from the 59–66 loop that in PTP1B includes a phosphorylation site (Tyr66) and was 
reported to be allosterically linked to active-site oxidation state 61, which is used for varying natural 
regulatory mechanisms in different PTPs 62–65.  Leu260 is in the catalytic Q loop and connects with the 
P loop and α4 helix, which is allosterically linked to activity 66,67.  Further down α4, Asp229 is at an 
allosteric activator site in STEP (PTPN5) 34,68, and connects with residues that exhibit conformational 
heterogeneity in high-resolution PTP1B structures 67 and enhance PTP1B activity when mutated 66.  
Finally, the 100% conserved Cys215 connects with several residues in the active-site P loop and E 
loop in our network, which is satisfying to observe given its catalytically essential nature.  Overall, the 
residues with the most conserved dynamic interactions across PTPs are related to PTP catalysis and 
various modes of regulation. 
 
To further dissect the sum network structure, we used the Girvan-Newman community detection 
algorithm 69 to partition the network, resulting in 7 communities or subnetworks (Fig. 3c-d).  This 
suggests that the PTP fold is arranged in a hierarchical manner, with a small number of cohesive local 
communities or clusters that each experience collective dynamics internally.  Some of these 
communities map to known functional regions, such as the catalytic Cys215 and nearby active-site 
residues (magenta) and the catalytic Q loop and substrate recognition loop (yellow). 
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Figure 3: Sum network analysis using all PTP structures.  
(a) 2D diagram of the RINFAIRE sum network for all suitable PTP structures, showing the top 5% of edges 
based on edge weight.  Line thickness represents edge weight; node size represents degree.  Sets of nodes 
with less than 5 edges are hidden for visual clarity. 
(b) Sum network mapped onto a structure of PTP1B (PDB ID: 1t49) 18.  Sphere size represents degree.  The 
archetypal family member PTP1B is used as a reference for residue labeling; only those residues with an 
analogous residue in PTP1B are shown.  
(c) The sum network is partitioned into 7 distinct communities (colors) using the Girvan-Newman algorithm (see 
Methods and Fig. S4). 
(d) The communities are mapped onto a representative structure of PTP1B (PDB ID: 1t49). 
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Network rewiring upon catalytic loop movement and ligand binding 
We next sought to assess how the dynamic network common to all PTPs changes in concert with 
enzyme functional state.  To do so, we compared subsets of structures with the catalytically critical, 
conformational bistable active-site WPD loop 20,21,59 in the closed state vs. open state (Fig. 4a,d), with 
an active-site ligand bound vs. the apo form (Fig. 4b,d), and with an allosteric ligand bound vs. the 
apo form (Fig. 4c,d).  For each comparison, we ensured that resolution distributions were sufficiently 
similar for the subset networks (Fig. S5, Fig. S6, Fig. S7).  
 
To assess changes in network connectivity, we mapped the difference in degree value (Δdegree) to 
the tertiary structure (Fig. 4a-c) and primary structure (Fig. 4d).  For each comparison, degree 
changed substantially across the PTP catalytic domain, indicating dynamic rewiring of the structurally 
distributed internal network related to catalytic motions or ligand binding.  Random sampling of 
different subsets of e.g. WPD closed vs. open structures leads to some variability but qualitatively 
similar Δdegree patterns (Fig. S8).  By contrast, negative control calculations with randomly selected 
halves of all the structures in our dataset regardless of category yield an averaged Δdegree plot that is 
featureless (Fig. 4e). 
 
When the WPD loop closes, degree increases moderately for several areas of the active site (red in 
Fig. 4a,d) including the WPD loop itself, P loop, Q loop, and pTyr binding loop.  Degree also increases 
for other regions, including the Met109 region (see previous section) and allosteric α4 helix 66,67.  This 
suggests that when they enter the closed “active” state, PTPs experience enhanced coupled 
conformational heterogeneity in the active site and related regions throughout the catalytic domain.  At 
the same time, some other regions compensate with decreased coupled conformational heterogeneity 
(blue in Fig. 4a,d) including the allosteric Loop 11 (i.e. L11) 21. 
 
Active-site (orthosteric) and non-active-site (allosteric) small-molecule ligands both induce significant 
Δdegree throughout the fold, but in different ways.  The Δdegree pattern for active-site ligands is 
reminiscent of that for WPD loop closing (Fig. 4a,d vs. Fig. 4b,d) in that degree increases for the 
WPD loop, Q loop, and pTyr loop, yet degree decreases for the P loop, perhaps due to rigidification 
from the bound ligands.  By contrast, the Δdegree pattern for allosteric ligands is distinct from that for 
WPD loop closing.  This is likely because allosteric ligands bind at many locations (Fig. S9) that may 
have distinct effects on the network shared by all PTPs and/or on different tendrils of the network in 
different PTPs.  Although there is a bias toward the WPD loop closed state for active-site ligands 
(62/80, 78%) and the open state for allosteric ligands (28/35, 80%), our control comparisons in the 
same WPD loop state also show different Δdegree patterns for active-site and allosteric ligands (Fig. 
S7), indicating these two ligand types impart fundamentally different dynamical effects on the PTP 
catalytic domain. 
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Figure 4: Rewiring of internal networks upon loop conformational change and ligand binding. 
The difference in weighted degree (Δdegree) for each residue in the all-PTPs sum network with all edges is 
mapped onto a cartoon visualization of structurally aligned, representative closed-state vs. open-state structures 
of the PTP catalytic domain (PDB ID: 1sug, 1t49) 18,54.  See red/blue color bars. 
(a) WPD loop conformational changes. 
(b) Active-site ligand binding. 
(c) Allosteric ligand binding. 
(d) Δdegree from (a-c) is mapped onto a 1-dimensional representation of the protein sequence (PTP1B 
numbering), with key regions labeled.  a/b/c labels on the left correspond to panels in the top row.  
(e) Δdegree is computed for 70 randomly sampled halves of our full dataset, averaged, and mapped onto a 
1-dimensional representation.  
See also Fig. S5. 
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Network rewiring between evolutionarily related PTPs 
While the PTP family may share aspects of a consensus allosteric network 35, we hypothesized that 
this network has also been rewired in various ways for many PTPs over the course of evolution to 
diversify their regulation and function.  To explore this hypothesis using RINFAIRE, we compared the 
sum network for each of several PTPs to the sum network for all other PTPs in our dataset.  We 
selected PTP1B (Fig. 5a,d), SHP2 (Fig. 5b,d), and YopH (Fig. 5c,d) because they are the most 
abundant in our dataset (see Fig. 1d and Data availability - metadata), or in the case of YopH have 
been compared to PTP1B in previous studies 59,70,71, and have contributions from structures across a 
wide resolution range (Fig. S10c).  
 
The results reveal a distinct pattern of dynamic connectivity in each PTP (rows in Fig. 5d).  PTP1B 
has the highest average Δdegree (+0.091), consistent with its well-known allosterism.  SHP2 has the 
lowest average Δdegree (-1.067), likely because it is locked into the rigid autoinhibited open state in 
all known structures.  YopH has an intermediate average Δdegree (+0.049).  Its highest Δdegree 
regions correspond to the α4 helix, where mutations increase PTP1B activity 66, and the region 
surrounding D245, where a mutation decreases PTP1B activity 72.  Because YopH is a highly active 
PTP, these observations suggest that changes in dynamics driven by sequence change in these 
regions of the PTP fold may play key roles in modulating catalytic activity.   
 
The distribution of open vs. closed WPD states differs across PTPs, including PTP1B (37 vs. 41), 
SHP2 (35 vs. 0), and YopH (3 vs. 8).  We therefore analyzed subsets of structures with the same 
WPD loop state, which resulted in similar Δdegree patterns (Fig. S11) as obtained from using all 
available structures (Fig. 5d).  Together, these findings support our hypothesis that different PTPs 
exhibit distinct inherent allosteric wiring. 
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Figure 5: Rewiring of internal networks in specific PTPs within the PTP family. 
The difference in weighted degree (Δdegree) for each residue in the sum networks with all edges is mapped 
onto a cartoon visualization of structurally aligned, representative closed vs. open-state structures of the PTP 
catalytic domain (PDB ID: 1sug, 1t49) 18,54.  See red/blue color bars. 
(a) PTP1B vs. other PTPs.  
(b) SHP2 vs. other PTPs. 
(c) YopH vs. other PTPs.  
(d) Δdegree is mapped onto a 1-dimensional representation of the protein sequence (PTP1B numbering), with 
key regions labeled.  a/b/c labels on the left correspond to the panels in the top row.   
See also Fig. S10 and Fig. S11. 
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Network overlap with residues involved in allostery/regulation/function 
We next explored how the all-PTPs sum network from RINFAIRE overlapped with residues that were 
previously reported to be involved in allostery, dynamics, and/or other aspects of PTP function.  We 
began by comparing our network to two so-called sectors of coevolving amino acid positions identified 
previously by statistical coupling analysis (SCA) for many PTP catalytic domain sequences 35.  Sector 
A was associated with known allosteric regions, whereas the role of sector B was less well 
understood.  In that work, residue positions with more nearby sector residues were associated with a 
higher fraction of experimentally characterized mutations that were functionally influential, based on a 
dataset of 67 experimentally characterized mutations spanning 13 PTPs.  We performed the same 
analysis with our all-PTPs sum network, choosing an edge weight cutoff (top 3%) to closely match the 
combined size of both SCA sectors and thus maximize comparability.  We observe a similar pattern, 
with mutations at sites near our network being more prone to influencing enzyme function (​​Fig. 6a).  
Specifically, only 43–52% of mutations at sites near 0–6 network residues influence function, yet 
88–100% of mutations at sites near 6–12 network residues influence function (​​Fig. 6a).  
 
To examine the overlap of our network with the SCA sectors more directly, we used a statistical test 
that compared the number of nearby residues from our network for (i) a set of residues of interest 
relative to (ii) a random set of residues of the same size 35.  The overlap was statistically significant 
both for our network with sector A and with sector B (Fig. 6b-c).  Taken together, these results 
suggest that our dynamic structure-based network and the purely sequence-based sectors offer 
similar yet complementary insights into conserved allosteric wiring in the PTP catalytic domain. 
 
We also explored how our network relates to sets of residues in the PTP fold that pertain to collective 
dynamics or specific modes of interdomain allosteric regulation.  These include residues that exhibit 
intermediate-timescale dynamics from 13C NMR relaxation dispersion experiments for PTP1B 73 (Fig. 
6d), or are located at regulatory domain interfaces with autoinhibitory SH2 domains in SHP2 or 
non-catalytic PTP-like D2 domains in receptor-type PTPs (Fig. 1e, Fig. 6e).  In each case, the overlap 
with our network is not significant.  However, there are caveats to these comparisons.  First, 13C NMR 
experiments are limited to methyl-containing side chains and specific timescales, in contrast to our 
network which includes all atoms and is agnostic to timescales, and it is unknown to what extent 
similar dynamics exist in other PTPs beyond PTP1B.  Second, the structural influences of regulatory 
domains may be felt beyond the direct interface residues that we chose to examine here; moreover, 
SHP2 operates by an autoinhibitory mechanism that is not present in other PTPs and may not 
necessitate allosteric signal propagation within the catalytic domain itself. 
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Figure 6: Colocalization of RINFAIRE network with regions of interest from previous studies. 
(a) Colocalization of our all-PTPs sum network (top 3% of edges) with previously experimentally characterized 
mutations 35.  All residues in a representative structure of PTP1B (PDB ID: 3a5j) were binned based on the 
number of residues from our network nearby (x-axis).  For each bin, all available curated experimentally 
characterized mutations (totals at top) were assessed, and the fraction that were functionally influential is 
indicated (y-axis).  
(b-e) Colocalization of our all-PTPs sum network (top 5% of edges) with different residues of interest from 
previous studies: (b) SCA sector A 35, (c) SCA sector B 35, (d) dynamic residues from 13C NMR for PTP1B 73, 
and (e) residues in regulatory domain interfaces with SH2 domains (SHP2) and D2 domains (receptor-type 
PTPs).  
Left sub-panels: Distribution of number of network residues within 4 Å for all residues in the set of interest, vs. 
similar analysis for random set of residues of the same size.  * p < 0.05 indicates distributions are statistically 
significantly different from a Kolmogorov-Smirnov test.  Jaccard ratio (J = intersection / union) is shown for each 
comparison between our network and residues of interest.  
Right sub-panels: Residues of interest (orange), our network residues (blue), and residues common to both 
(maroon) mapped to a representative structure of PTP1B (PDB ID: 1sug).  
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Highly networked residues impact function regardless of sequence 
conservation 
The preceding results suggest that the PTP network identified by RINFAIRE is relevant to allosteric 
modulation of enzyme activity (Fig. 6a-c).  We experimentally tested this hypothesis in a forward 
manner by mutating residues implicated as being important in our network and characterizing their 
effects on enzyme activity.  To identify suitable residues for these experiments, we examined the 
correlation between network weighted degree and sequence conservation across the PTP family.  The 
correlation was moderate-to-weak (Fig. 7a), indicating that more conserved residues generally tend to 
be more dynamically interconnected, yet there is a range of connectivity for different residues within 
each bin of sequence conservation. 
 
We therefore chose to mutate residues with high network connectivity given their sequence 
conservation, in three different conservation regimes: low (<40%), intermediate (40–80%), and high 
(>80%).  These criteria led us to three promising, complementary residues: 230 (35.6% conserved), 
260 (66.3%), and 109 (94.8%) (colored points in Fig. 7a).  These residues are widely distributed in the 
3D structure of PTP1B (Fig. 7b), but are all near functionally relevant sites, including the catalytic 
Cys215, catalytic Q loop, and allosteric α4 helix (Fig. 7b). 
 
We subsequently created T230A, L260A, and M109A mutant proteins and performed enzyme activity 
assays (see Methods).  Consistent with our hypothesis that these residues are integrally placed in the 
allosteric wiring of the PTP fold, all of these mutations significantly affect the catalytic activity of 
PTP1B significantly (Fig. 7c-d).   
 
M109A reduces activity most dramatically, with a significant decrease in kcat (~4.6x).  M109A also 
decreases Km (~2.3x), perhaps due to its proximity to the substrate-binding P loop.  However, overall 
M109A significantly decreases kcat/Km (~2.0x).  Our results for M109A are in line with prior reports that 
M109 mutations reduced activity by ~8–10x 35,74.  L260A reduces activity to an intermediate degree, 
with a decrease in kcat/Km (~1.6x) driven by a decrease in kcat (~1.9x).   
 
Surprisingly, T230A, which is the most distal of the three mutations from the active site (Fig. 7b), 
enhances PTP1B activity, with an increase in kcat/Km (~1.3x, 30%) driven by an increase in kcat (~1.3x).  
Notably, several mutants of F225, which is roughly one turn away from T230 in the α4 helix, were also 
found to enhance activity in PTP1B, including F225Y (~1.8x), F225Y/R199N (~2.2x), and 
F225Y/R199N/L195R (~4x) 66.  These observations suggest that the broader α4 helix region in 
PTP1B, and potentially also in other PTPs 66, may play a central role in dictating the catalytic rate. 
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Figure 7: High-degree network residues control catalytic activity regardless of sequence conservation. 
(a) Weighted degree from our all-PTPs sum network plotted against sequence conservation, for all comparable 
residues in the PTP fold.  Labeled, colored residues have high degree relative to their sequence conservation. 
R2 represents correlation for linear fit between degree values and conservation scores for all residues (dotted 
line). 
(b) Labeled residues from (a) are shown as spheres and mapped to a representative structure of PTP1B (PDB 
ID: 1sug), with colors corresponding to (a).  Key regions including the WPD loop, E loop, P loop, Q loop, and α4 
helix are labeled. 
(c) Experimental Michaelis-Menten kinetics plot using pNPP substrate for WT PTP1B vs. M109A, T230A, and 
L260A mutations.  Data points represent average values from n=4 replicates; error bars represent 95% 
confidence intervals.  
(d) Michaelis-Menten kinetics parameters were derived from the average data in (c), with 95% confidence 
intervals indicating variability across replicates. 

 



 

Discussion 
Despite a structurally conserved catalytic domain (Fig. 1), PTPs have divergent biological roles 75,76 
that may be enabled by differences in allosteric wiring.  Crystallographic multiconformer modeling with 
qFit 45–49 affords a unique opportunity to analyze coupling between alternate conformations that may 
underlie allostery, but methods to analyze these complex models have been limited.  Here we 
introduce RINFAIRE, a new algorithm for analyzing networks of coupled conformational heterogeneity 
across related protein structures (Fig. 2).  Coupling the latest improved version of qFit 49 to RINFAIRE, 
we have mapped a consensus PTP dynamic interaction network that encompasses many key 
catalytic and allosteric motifs (Fig. 3), analyzed how this network changes in response to catalytic 
motions and ligand binding (Fig. 4), assessed how it differs between functionally divergent PTPs (Fig. 
5), compared it with various sets of dynamic/allosteric residues (Fig. 6), and validated it prospectively 
with in vitro biochemical experiments (Fig. 7).  Together, our results suggest that the networks 
identified by RINFAIRE are indeed relevant to allostery in the PTP fold. 
 
Future upstream developments of qFit could benefit downstream RINFAIRE analyses.  First, qFit only 
models relatively small-scale alternate conformations (~1 Å), so does not capture e.g. movements of 
the WPD loop, loop 16, and α7 helix 21,67,77 in PTPs.  Future work can improve modeling of larger-scale 
backbone flexibility in qFit, e.g. using automated loop sampling driven by density maps 78 and/or 
cross-pollination of conformations from independent structures 79.  Such modeling would be aided by 
new macromolecular model formats to encode hierarchical conformational heterogeneity 80.  Second, 
small-molecule ligands bound to proteins can adopt alternate conformations in crystal structures 47,48, 
but qFit does not yet simultaneously model flexibility for both proteins and bound ligands.  Future 
development can address this limitation, thus providing new opportunities to explore the interplay 
between protein and ligand conformational heterogeneity in e.g. active-site vs. allosteric-site binding 
pockets (Fig. 4b,c). 
 
There is also room for future RINFAIRE developments that could yield new insights into mechanisms 
of allosteric wiring.  First, RINFAIRE uses a distance-based approach (default: 4 Å) for identifying 
through-space residue-residue interactions and quantifying the associated edge weights (Fig. 2b).  
This approach has several advantages: simplicity, consistency with past precedent in the literature for 
protein structure RINs (albeit for static structures instead of alternate conformations) 81–83, and 
implicitly accounting for a variety of physicochemical interaction types including not only unfavorable 
steric clashes but also favorable H-bonds, van der Waals interactions, salt bridges, etc.  These 
through-space interactions are complemented with through-backbone interactions (Fig. 2b), which 
also play important roles in correlated motions in proteins 46,84,85.  Nevertheless, RINFAIRE is readily 
extensible to more complex/physics-based scoring functions for interactions between residues.  
Second, there is a growing algorithmic toolkit for protein structure contact network analysis that could 
prove useful for RINFAIRE, including modeling contact rearrangements as edges 86, eigenvector 
centrality for pinpointing allosteric residues 87, and many other ideas 5,88,89. 
 
The analysis reported here benefits from the availability of many high-resolution crystal structures that 
sample distinct conformational states, crystal lattices, crystallization conditions, etc. and thus provide 
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a useful “pseudo-ensemble” 90–92.  For the PTP family, some PTPs are more well-represented in the 
PDB (Fig. 1d), which led us to focus our inter-PTP analyses on these PTPs (Fig. 5, Fig. S11).  
Careful matching of relevant experimental factors using the RINFAIRE metadata functionality may 
enable further inter-PTP comparisons which were beyond the scope of the current report.  For 
example, specific crystal contacts may facilitate distinct patterns of local conformational states and/or 
disorder 67,93.  Such comparisons will gain statistical power over time as more crystal structures are 
deposited to the PDB.  Indeed, it is noteworthy that 153 of the 170 crystal structures used in this study 
were from the last 10 years.  It is also possible that cryo-electron microscopy (cryo-EM) will reach the 
stage of yielding high-resolution structures for enzymes such as PTPs; notably, qFit also works with 
cryo-EM density maps 49.  Additional alternative structures could be generated by computational 
means such as AlphaFold 94,95 with multiple sequence alignment subsampling 96–98, flow matching 99, or 
predicted side-chain χ angle distributions 100, and then used as inputs to RINFAIRE to predict allosteric 
networks at a larger scale, much as AlphaFold has been used at a proteome-wide scale 101. 
 
Although we focused on the PTP enzyme family in this study, our new computational pipeline can be 
easily applied to any other sets of related protein structures with a sufficient number of suitable input 
structures.  As such, it sets the stage for future studies of how conformational ensembles are 
reshaped by sequence changes to alter dynamic properties such as allosteric signaling in a variety of 
contexts, including other biomedically important protein families and trajectories of iteratively designed 
or ancestrally reconstructed proteins.  Building on the ligand comparisons presented here (Fig. 4b,c), 
our pipeline could also be used to unveil allosteric effects of small-molecule fragment binding from 
high-throughput crystallographic screens 21,77,102–104, thus providing more confident footholds for 
rational allosteric drug design 105. 
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Materials and Methods 
The following is an abbreviated Materials and Methods section — for full details, see the 
Supplementary Information. 
 
PTP catalytic domain structures were obtained using Pfam (PF00102) 106 and the PDB.  Structures 
that were successfully automatically re-refined with PHENIX 107–109 were subjected to qFit 
multiconformer modeling 49, followed by removing non-catalytic domains and splitting individual 
catalytic domain instances in cases of non-crystallographic symmetry.  Structure-based multiple 
sequence alignment was performed using PROMALS3D 110.  Metadata including PTP name, 
crystallographic R-factors, ligand type and location, and WPD loop state were tabulated.   
 
RINFAIRE generates a residue interaction network for each provided qFit multiconformer model 
based on spatial proximity of alternate conformations (within 4 Å); edges between residues are 
normalized based on residue size (number of atoms).  Backbone alternate conformations of 
sequentially adjacent residues are treated differently with a recursive method.  RINFAIRE then uses a 
multiple sequence alignment to construct a “multinetwork” with all residue numbers shifted to a 
common reference.  In the multinetwork, all contributing networks (from individual structures) are log 
normalized based on their total edge weights, to discourage unbalanced contributions from networks 
with many connections (e.g. high-resolution structures).  To generate a sum network, the total edge 
weight for each edge in the multinetwork is calculated.  To facilitate most subsequent analyses, we 
trimmed the sum network to the top 5% of edges (95% of lowest edge weights removed).  
 
To identify communities within the sum network, we used the Girvan-Newman method 69 implemented 
in NetworkX 111 and identified where modularity plateaus.  For Δdegree plots, the degree values for all 
residues for two subset sum networks were subtracted, and the resulting differences visualized on the 
sequence and the structure with a common color scale.  To ensure a comparable analysis across 
different datasets, one-tailed Mann-Whitney U tests were performed, and resolution ranges were 
adjusted as needed.  Colocalization of the all-PTPs sum network with functionally influential 
experimentally characterized PTP mutations and statistical analysis of sum network overlap with other 
sets of residues of interest were performed as previously described 35.  Residues in regulatory domain 
interfaces in SHP2 and D2-containing PTPs were identified using distance commands in PyMol. 
 
PTP1B site-directed mutagenesis, expression, purification, and Michaelis-Menten enzyme activity 
assays were performed as previously described 21,72. 
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Data availability 
The following supplementary data files are available at this Zenodo repository: 
https://doi.org/10.5281/zenodo.15420194.  

●​ PTP structures metadata table. 
●​ PTPs PROMALS3D multiple sequence alignment (MSA) file. 
●​ Single-chain catalytic domain models from PTP qFit multiconformer structures (for use in all 

analyses). 
●​ Full PTP qFit multiconformer structures (only for crystallographic refinement). 
●​ Multinetwork Python pickle file for all-PTPs sum network with all edges. 
●​ Residue weighted-degree values and residue-residue edge weights, for all-PTPs sum network 

with all edges (0% edges removed) and top 5% of edges (95% weakest edges removed).  
●​ Lists of residues used for Fig. 6. 

Code availability 
The open-source RINFAIRE software reported here is available at this GitHub repository: 
https://github.com/keedylab/rinfaire.  The repository contains all Python code and scripts needed to 
run the software, a Pipfile to facilitate installation of dependencies, and a README file.  The version 
used for the analyses in this study is v2025.1, the initial public release.  
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Supplementary Information 

Mapping allosteric rewiring in related protein structures from collections of 
crystallographic multiconformer models 

 

Supplementary Materials and Methods 

Dataset curation and processing 
To obtain a list of structures that mapped to the “classical” protein tyrosine phosphatase family found 
in humans and other homologs, we used the Pfam protein family PF00102 106 as an initial grouping of 
sequences and structures.  Only natural PTP enzymes were included; engineered chimeric PTPs 
112,113 were excluded.  Similarly, archaeal PTPs with a sequence similarity of <30% were excluded 114.  
Structures with only a catalytically inactive D2 domain (no D1 domain) were excluded as well.  These 
entries were then filtered to only include those with protein structures in the Protein Data Bank (PDB) 
(as of June 17th, 2022).  Two additional structures were manually added into our analysis, for TCPTP 
(PTPN2) (PDB ID: 7f5n and 7f5o).  The structures (.pdb format) and structure factor data (.mtz format) 
were then inputted into a Jupyter Notebook, where they were processed using the Python package 
GEMMI 115.  Structures were then filtered to only those resolved using X-ray crystallography and 
having a resolution equal to or better than 2.1 Å, leaving a total of 189 structures for further analysis.  
 
Automated structure refinement was performed through the PHENIX software (version 1.19.2-4158) 
107–109.  To prepare the model for refinement, phenix.ready_set was run to add hydrogens and create 
.cif restraints files for any ligands.  For refinement, phenix.refine was then run using the following 
parameters: 

-​ .pdb file from phenix.ready_set 
-​ .mtz file 
-​ .cif restraints file(s) for ligand(s) generated by phenix.ready_set 
-​ refinement.refine.strategy=individual_sites+individual_adp+occupancies 
-​ refinement.main.nqh_flips=true 
-​ optimize_xyz_weight=true 
-​ optimize_adp_weight=true 
-​ hydrogens.refine=riding 
-​ refinement.main.number_of_macro_cycles=8 
-​ refinement.output.write_def_file=false 
-​ refinement.output.write_eff_file=false 
-​ refinement.output.write_geo_file=false 
-​ refinement.input.xray_data.labels={xraylabel} 
-​ refinement.input.xray_data.r_free_flags.{rfreelabel} 
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The X-ray label and Rfree label were determined from the output of the phenix.mtz.dump utility.  To test 
whether the refinement had in fact improved the structure to better fit the data, the Rfree, Rwork, and 
R-gap (Rfree - Rwork) values before and after the refinement were then aggregated and compared, with 
structures that had an increase of ≥2.5% in Rfree (Rfree(start) - Rfree(final)) after refinement being removed 
(Fig. S12).  In addition, 8 structures failed during automated re-refinement, and were excluded from 
further analysis.  Composite omit maps for input to qFit were generated using 
phenix.composite_omit_map.  

Multiconformer modeling with qFit 
We used qFit to identify alternate conformations of proteins that are supported by the electron density 
but were not initially modeled.  Briefly, qFit samples possible conformations of each residue’s 
backbone and sidechain, and selects the set of discrete alternate conformations that best and most 
parsimoniously explain the local electron density.  It then reassembles the protein, including flexible 
backbone segments, to generate a complete but unrefined multiconformer model of the protein.  This 
model is then refined using PHENIX and low-occupancy conformations are iteratively culled, yielding 
the final qFit multiconformer model.  Previous versions of qFit introduced the algorithm 45, added 
backbone flexibility 46, added support for small-molecule ligands 47, added support for cryo-EM as well 
as X-ray maps 48, and provided further algorithmic enhancements 49.   
 
For this study, we used a version (untagged) slightly ahead of the most recently released qFit version 
3.2.2, with additional development (until and including commit #372) 49.  We used the following 
command line parameters for qFit: 

qfit_protein \ 
composite_omit_map.mtz  
-l 2FOFCWT,PH2FOFCWT \ 
refined_structure.pdb \ 
-d output_directory \ 
-p 20 

 
For the final iterative refinement stage, we used the built-in qFit refinement script with PHENIX 
(version 1.19.2-4158).  Of the 189 input structures, 6 were excluded due to an increase in Rfree ≥ 2.5% 
during initial rounds of refinement.  An additional 6 structures failed during qFit multiconformer 
modeling and/or the final iterative refinement stage.  Furthermore, 7 structures exhibited an Rfree 
increase of ≥ 2.5% during the qFit final refinement.  These 19 structures were excluded from further 
analysis, resulting in a final dataset of 170 structures.  These intermediate, full-asymmetric-unit qFit 
models are available as supplementary information. 
 
The PTP qFit structures were then processed to remove extra protein domains within the same 
polypeptide chain, such as regulatory SH2 domains and non-catalytic D2 domains, so that the 
analysis would be confined to just the PTP catalytic domain.  Non-catalytic D2 domains, which are in 
the same polypeptide as the main catalytic D1 domain, were not considered to be additional catalytic 
domain structures for our study.  Some structures contained multiple non-identical copies of the 
catalytic domain by non-crystallographic symmetry; these domains were split into separate model files 
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for subsequent analysis.  These final catalytic domain qFit models are available as supplementary 
information. 

Multiple sequence alignment and metadata 
To prepare inputs for the RINFAIRE program (see below), PROMALS3D 110 was used to generate a 
structure-based multiple sequence alignment (MSA) for all the structures in the dataset .  The output 
MSA was used to calculate the conservation score per residue using the ScoreCons server 116.  The 
PTPs MSA file is available as supplementary information. 
 
We curated a metadata table using information about PTP crystal structures deposited in the PDB.  
We collected data on source organism, protein name, gene name, resolution, R-factors, ligand status 
(bound vs. apo), nature of ligand (inhibitory vs. activating vs. no effect), ligand binding location (active 
vs. allosteric), mutations (if any), and domains modeled.  Visual inspection in PyMol 117 was used to 
also identify the state of the WPD loop (open, closed, or super-open).  The metadata table is available 
as supplementary information. 
 
To calculate the average sequence identity in the catalytic domain across classical human PTPs (Fig. 
7a), Clustal Omega 118 was used to perform a multiple sequence (MSA) alignment of the wild-type 
sequence for all 37 human PTPs, using only the catalytic domain.  The resulting sequenced-based 
MSA is distinct from the structure-based MSA used for aligning networks within RINFAIRE (see 
below).  Mean sequence identity values were calculated using the sequence-based MSA alignment 
matrix result file.  

Overview of the core RINFAIRE program 

Constructing individual networks 
RINFAIRE takes in a set of multiconformer protein structures (.pdb files) and a sequence alignment of 
the protein sequences (in the case that there is more than one structure).  The program starts by 
generating individual networks of conformationally coupled residues in each input protein structure.   
These networks are undirected weighted graphs in which the nodes represent residues and the edges 
represent the conformational coupling between residues.  To find the degree to which two residues’ 
sets of alternate conformations are conformationally linked, we employ a distance-based approach, 
while treating alternate conformations along the backbone of two consecutive residues differently. 
 
For every pair of residues, RINFAIRE identifies the atoms that have an alternate conformation in the 
structure, including hydrogen atoms added to the model.  For residues that are not sequentially 
adjacent, it first finds all pairs of alternate conformations between the two residues.  Because the 
alternate-location (alt-loc) labels in both residues might not reflect how they are coupled, we search 
across all possible pairs including those with the same label.  For each pair of conformers, it 
calculates the distances for all atoms between them and sums the number of atoms that are within 4 
Å of each other.  While this parameter is adjustable in our program, we chose a 4 Å cutoff distance 
because previous literature had suggested that distance thresholds around 4 Å are a reasonable 
cutoff point for residue-residue contact analysis 83.  
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We then take the sum of all atom counts for all pairs of conformations for a given residue pair and 
normalize this count by the total number of atoms across all conformers in both residues.  This is to 
mitigate biases both from larger residues having more possible connections along with residues that 
have many alternate conformations that might also inflate the number of connections between 
residues.  The normalized count represents the combined measure of connectivity between these two 
residues.  If this value is not zero, an edge is drawn between the two residues in the network with a 
weight equal to the normalized count. 
 
Pairs of residues that are sequentially adjacent are treated differently, as there could be interactions 
along the backbone as well as steric interactions between both the backbone and sidechain and 
between the two sidechains themselves.  To model backbone-backbone interactions we use an 
algorithm that progressively searches for alternate conformations across the backbone of two 
residues and tallies the number of alternate conformation atoms along each path.  In this method, we 
only iterate over the same alt-loc label across both residues (ie. alt A of residue x and alt A of residue 
x+1).  For each pair, it starts by checking if the atoms across the amide bond between the two 
residues have alternate conformations, since any backbone movement between the two residues 
must pass through this.  If so, then it recursively searches the next chemically bonded atom along the 
backbone and adds that to the count of atom connections if that is also an alternate conformation for 
that alt-loc label. 
 
Sidechain-sidechain and sidechain-backbone connections are calculated using the distance based 
algorithm with the same 4 Å cutoff metric.  Due to the proximity of the beta carbon on the sidechain to 
the rest of the backbone, we removed the beta carbon along with all of the hydrogens bonded to it 
when considering sidechain-backbone steric interactions.  Once all of the backbone-backbone, 
sidechain-backbone, and sidechain-sidechain interactions are counted and normalized, this value is 
the total connectivity between the two residues and added as an edge in the network. 

Constructing the multinetwork 
Once these networks are created for each individual structure, we then align each structure’s network 
using the user-provided sequence alignment.  This is done by shifting the residue number for each 
individual network residue to the corresponding position of that residue in the alignment.  This allows 
for analogous residues across structures to have node labels that map onto the same alignment 
position even if the two structures are homologs, have unmodeled regions, or have different residue 
numbering schemes.  This shifting can always be undone in later stages of the pipeline when we need 
to map alignment residue position back onto a reference structure’s position by using the sequence 
alignment.   
 
The network corresponding to each structure is log normalized based on the log of the total edge 
weight across the individual network relative to other individual networks.  This normalization is 
intended to put networks with different numbers of edges, which may stem from structures with 
different numbers of alternate conformations (due to factors such as differing crystallographic 
resolution), on comparable footing.  After this transformation, the total edge weights are also clipped 



 

at the 99th percentile of the distribution of total edge weights across all structures so that any outlier 
structures with a much larger number of edges do not overly skew the overall network. 
 
Aligning the individual networks allows us to easily compare them at analogous residue positions.   
Internally, since we can represent each shifted network as an adjacency matrix, we can simply stack 
each n x n adjacency matrix (where n is the length of the sequence alignment) on top of each other.   
This creates an n x n x m dimensional array (where m is the number of structures) that we call the 
multinetwork.  This object is what then gets passed to downstream analyses that will take the sum, 
subset, and perform other operations on this data. 

Sum network analysis 
The sum network was generated by using the aligned multinetwork object and taking the sum of the 
edge weights across all structures in the dataset.  This was achieved by taking the sum across the 
structure dimension of the multinetwork array such that we get an n x n matrix that is also an 
adjacency matrix of the summed network for the entire dataset.  Unless otherwise noted for some 
analyses, we then removed 95% of the weakest edges by edge weight, and removed any component 
network with less than five residues.  While these parameters resulted in easily interpretable networks 
for our system, we allow these values to be altered by the user.  Finally, the network was also shifted 
back to the reference sequence of PTP1B (PDB ID: 1sug) at analogous positions on the sequence 
alignment. 
 
To identify communities within the sum network, we used the Girvan-Newman method for community 
detection 69 implemented in the Python library NetworkX 111.  The modularity score for each number of 
partitions was calculated, with the best partition being picked when the increase in modularity score 
had plateaued (increase from k partitions to k+1 partitions was < 0.01) (Fig. S4).  
 
An additional consideration when analyzing sum networks concerns the WPD loop, loop 16 (L16), and 
α7 helix (in PTP1B and TCPTP).  Although these regions are highly dynamic and critical to PTP 
function, the list of most connected (highest-degree) residues excludes them.  This is likely because 
the WPD loop and loop 16 open/closed movements are large (each ~6 Å) and α7 undergoes an 
order-disorder transition, neither of which can be automatically modeled by qFit currently.  As a result, 
these regions are not modeled with crystallographic alternate conformations (with relatively rare 
exceptions in the PDB 21,77,119,120), so their importance is not captured by RINFAIRE. 

Degree difference plots  
A pair of sum networks were used to calculate the difference in degree per residue.  At the time of 
running analysis_sum.py, -–seq_to_ref flag was used with a single reference structure (PDB: 1sug, 
chain A) to keep the residue numbering consistent for downstream difference calculations.  For 
visualization, an RGB spectrum was used with an absolute color scale for consistency across 
comparisons.  The absolute maximum Δdegree for each plot was set at a value of 10 and used for all 
the analysis.  The same scale is used for visualizing as 1-dimensional strip plots and as 3-dimensional 
structure cartoons with PyMol.  The same steps were used for comparing random subsets of 
structures (Fig. S8).  
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We carried out multiple comparative analyses using the sum networks from different PTPs as well as 
the different states in PTPs.  The output sum network for each condition was generated using 
RINFAIRE.  The degree value for every residue in the network was then used to calculate the 
difference, comparing the two datasets.  This includes subsets of PTP sum networks, based on the 
state of their WPD loop (open vs. closed), ligand state (bound vs. apo), and individual PTPs such as 
PTP1B, SHP2, and YopH, each compared to all other PTPs.  To ensure that comparable sets of 
structures were being used for each comparison, a one-tailed Mann-Whitney U test was performed to 
compare the resolution distribution for the structures.  This is a suitable test for our data because it is 
non-parametric and does not assume a normal distribution (Fig. S5-7, Fig. S10).  

Defining regulatory interface in SHP2 and D1/D2 structures  
All structures in our analysis with an SH2 domain or D2 domain were used to calculate interface 
residues for SHP2 structure and D2-domain-containing structures respectively.  The distance cutoff for 
the interface was set at 4 Å and each domain was defined for calculation.  For SH2 domains, the 
PyMol command used to obtain interface residues was: ‘select near_SH2, (byres *_* and i. 225-517) 
within 4 of (*_* and i. 1-215)’.  This resulted in a list of residues including (SHP2 numbering) 229, 244, 
248, 249, 252, 253, 255, 256, 257, 258, 259, 260, 262, 265, 279, 280, 281, 282, 285, 364, 366, 425, 
426, 427, 460, 461, 463, 464, 465, 502, 503, 506, 507, 508, and 510.  For D2 domains, the PyMol 
commands to select interface residues were: ‘select D1, (2FH7 or 4BPC) and i. 1368-1650’; ‘sele D2, 
(2FH7 or 4BPC) and i. 1659-1942’; ‘sele D1_near_D2, byres (D1 within 4 of D2)’.  This resulted in a 
list of residues including (D1/D2 numbering) 1526, 1527, 1562, 1563, 1565, 1566, 1572, 1573, 1647, 
1650, and 1525. 

Network overlap analysis 
The sum network for colocalization analysis (Fig. 6a) was constructed using a slightly different edge 
weight cutoff (removing 97% of the weakest edges) from most other analyses, which resulted in a total 
of 82 residues.  This was to approximately match the combined size of both SCA sectors of 75 
residues 35.  By contrast, our default edge weight cutoff (removing 95% of edges) has a total of 88 
residues.  The lists of “influential” and “experimentally characterized” mutations were compiled from 
previous literature 35.  Each bin is inclusive of the lower bound but excludes the upper bound; thus the 
first bin (0–2) includes residues that are not within ≤ 4 Å of any residues from our network.  The 
fraction was calculated using the number of residues in the influential mutation category in each bin 
divided by the number of residues in that bin that have been experimentally characterized.  
 
For the overlap analyses with different sets of residues of interest (Fig. 6b-e), a Kolmogorov-Smirnov 
non-parametric test was used to measure statistical significance.  This overlap is assessed between 
the region of interest and either the set of highly connected residues in our network (top 5% edges) or 
a set of randomly selected network residues (no edges removed).  The latter analysis was repeated 
100 times, each using a different randomly selected set of residues.  The sampling shown in the main 
figure (Fig. 6b–e) corresponds to the final random sample, which we confirmed yields a p-value that is 
consistent with the majority of the samples (p < 0.05 for 89/100 in Fig. 6b, 76/100 in Fig. 6c, 0/100 in 
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Fig. 6d, and 2/100 in Fig. 6e) and thus is representative of the overall distribution of random samples.  
The use of the KS test for such analyses has precedent in prior literature 35. 

Enzyme expression and purification 
All biophysical experiments were performed using the wild-type PTP1B sequence comprising residues 
1–321.  The construct was cloned into a pET24b vector, which includes a kanamycin resistance gene.  
Unlike some previous crystallographic studies involving PTP1B, this work utilized the true wild-type 
sequence, without the commonly used WT* mutations (C32S/C92V).  The initial wild-type construct 
contained residues 1–435 of PTP1B, but site-directed mutagenesis was previously employed to 
truncate it to residues 1–321.  Using this shortened construct as a template, site-directed mutagenesis 
was also applied to generate the M109A, T230A, and L260A variants. 
 
Protein expression and purification followed a previously established protocol with minor 
modifications.  Plasmids carrying the intended mutations were introduced into competent E. coli BL21 
(DE3) cells via transformation.  After overnight incubation on LB agar plates supplemented with 
kanamycin at 37°C, individual colonies were used to inoculate 5 mL LB cultures containing kanamycin 
(1 mM final concentration), which were grown overnight at 37°C with shaking.  The overnight cultures 
were then used to inoculate larger 1 L LB cultures with the same antibiotic concentration.  These were 
grown at 37°C with shaking until the optical density at 600 nm (OD600) reached approximately 0.6–0.8.  
Protein expression was induced with IPTG at a final concentration of 500 μM, and cultures were 
incubated overnight at 18°C with shaking.  The cells were collected via centrifugation, flash-frozen, 
and stored at -80°C in 50 mL conical tubes until further purification. 
 
For purification, cell pellets (“cellets”) were resuspended in a lysis buffer containing Pierce protease 
inhibitor tablets and vortexed thoroughly.  The suspension was sonicated on ice for 10 minutes at 50% 
amplitude, using 10-second on/off pulses.  Following sonication, the lysate was centrifuged, and the 
supernatant was filtered through a 0.22 μm syringe filter before proceeding with purification.  The first 
purification step involved cation exchange chromatography using a HiPrep SP FF 16/10 column (GE 
Healthcare Life Sciences), with a lysis buffer containing 100 mM MES (pH 6.5), 1 mM EDTA, and 1 
mM DTT, alongside a NaCl gradient ranging from 0 to 1 M.  The target protein eluted at approximately 
200 mM NaCl.  This was followed by size exclusion chromatography on an S75 column (GE 
Healthcare Life Sciences) using a buffer composed of 10 mM Tris (pH 7.5), 0.2 mM EDTA, 25 mM 
NaCl, and 3 mM DTT.  The purity of the final protein sample was confirmed through SDS-PAGE 
analysis, which indicated a high level of purity with no detectable contaminants. 

Enzyme activity assays 
To assess the kinetic parameters of the mutant proteins, a colorimetric assay was performed using 
para-nitrophenyl phosphate (pNPP) as the substrate.  The assay buffer was prepared with a final 
composition of 50 mM HEPES (pH 7.0), 1 mM EDTA, 100 mM NaCl, 0.05% Tween-20, and 1 mM 
β-mercaptoethanol (BME).  After being filtered through a 0.22 µm membrane, the buffer was stored at 
room temperature.  A series of 12 pNPP concentrations, ranging from 40 mM to 0.039mM, was 
generated via serial dilution in the assay buffer to ensure a wide range of substrate concentrations for 
kinetic analysis. 
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Before initiating the assay, the concentration of each mutant protein was measured twice in three 
independent replicates using a NanoDrop One.  The protein samples were then diluted to a uniform 
concentration of 125 nM in the assay buffer, and the final concentration of each mutant protein was 
re-evaluated to confirm consistency.  For the assay, 50 µL of the diluted protein solution was 
dispensed into wells of a Corning 96-well flat-bottom, non-binding polystyrene plate.  The reaction was 
initiated by adding 50 µL of the pNPP + assay buffer solution to each well, followed by gentle pipetting 
to ensure thorough mixing.  Absorbance at 405 nm was recorded every 17 seconds over a 6-minute 
period using a SpectraMax i3 plate reader.  Each pNPP concentration was tested in quadruplicate for 
each mutant protein. 
 
The rate of absorbance change (mAU per minute) over the 6-minute duration was determined and 
used to calculate the maximum reaction velocity (Vmax).  The catalytic constant (kcat) was obtained by 
dividing Vmax by the average concentration of the corresponding mutant protein.  Kinetic values from 
two independent experiments were pooled and analyzed using GraphPad Prism 9, which was used to 
generate kinetic curves and determine the Michaelis constant (Km). 

 



 

Supplementary Figures 
 
 

 
Figure S1: Source organism distribution for PTPs. 
Bar chart showing source organisms for all PTPs used in network analysis, including mammalian, plant, and 
bacterial. 
 
 
 

 
Figure S2: Two complementary methods for defining residue-residue connections. 
The methodology used for assigning a connection/edge between two residues with alternate conformations in a 
RINFAIRE network, depending on whether the atoms are nearby (a) in space or (b) via covalent bonds in the 
protein backbone.  See main Fig. 2. 



 

 
Figure S3: Changes in R-values for automatic and qFit refinement. 
Comparison of R-factors for original, automatically re-refined, and qFit refined structures used in our analysis.  
Boxes represent the interquartile range (IQR), central lines represent the median, whiskers represent 1.5x the 
IQR, and points are outliers beyond the whiskers.  * p < 0.05 from two-tailed Student’s t-test, indicating the 
distributions are statistically significantly different. 
(a) Rwork for original deposited (mean: 0.186), automatically re-refined (0.181), and qFit refined (0.183) 
structures. 
(b) Rfree for original deposited (0.219), automatically re-refined (0.214), and qFit refined (0.212) structures. 
(c) R-gap (Rfree-Rwork) for original deposited (0.033), automatically re-refined (0.033), and qFit refined (0.029) 
structures. 
 
 
 
 
 

 
Figure S4: Determining number of clusters based on modularity. 
Plot of modularity vs. number of clusters (k), for Girvan-Newman community detection.  The red dotted line 
marks the value of k where modularity is maximal, indicating the optimal number of clusters.  See main Fig. 
3c-d. 



 

 
Figure S5: Resolution distributions for WPD open/closed state and ligand-bound structures.  
Resolution distributions for all PTP structures in different active-site conformations and ligand states.  
Histograms of resolution for each of the pairwise subsets of PTP structures used for analysis in main Fig. 4.  For 
each panel, a one-tailed Mann-Whitney U test was performed to compare the two distributions.  The p-value 
was calculated for each pair of distributions (p < 0.05 indicates significantly different).  The dotted line (if shown) 
indicates that only structures within the defined resolutions were used.  
(a) WPD loop closed vs. open.  Used 1.05–2.10 Å (inclusive) resolution range; p = 0.72. 
(b) Bound to active-site ligand vs. apo.  Used 1.05–2.10 Å (inclusive) resolution range; p = 0.22. 
(c) Bound to allosteric ligand vs. apo.  Used 1.65–2.10 Å (inclusive) resolution range; p = 0.07. 
 
 



 

 
Figure S6: Resolution distribution and sum network comparison for apo structures in WPD closed vs. 
open states.  
Resolution distributions and degree differences for WPD closed vs. open conformations in the apo state. 
Analysis of difference in weighted degree (Δdegree) for each residue in the sum networks for PTP structures in 
the WPD open state with no ligands vs. those with the WPD closed state with no ligands.   
(a) Histogram of resolution for the relevant subset of structures. A one-tailed Mann-Whitney U test was 
performed to compare the two distributions.  The p-value was calculated for the pair of distributions (p < 0.05 
indicates significantly different).  The resulting p-value was 0.51. 
(b) Δdegree is mapped onto a cartoon visualization of structurally aligned, representative closed vs. open-state 
structure of the PTP catalytic domain (PDB ID: 1sug, 1t49)  18,54.  See color bar labels for red/blue coloring 
conventions. 
(c) Δdegree is mapped onto a 1-dimensional representation of the protein sequence (PTP1B numbering), with 
key regions labeled.  
Compare to main Fig. 4a,d. 
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Figure S7: Resolution distributions and sum network comparisons for ligand-bound structures in WPD 
open state. 
Resolution distributions and degree differences for active-site or allosteric ligands bound to a WPD open 
conformation.  Analysis of difference in weighted degree (Δdegree) for each residue in the sum networks for the 
following subsets of PTP structures: active-site ligand structures in the WPD open state vs. apo structures in the 
WPD open state, and allosteric ligand structures in the WPD open state vs. apo structures in the WPD open 
state. 
(a-b) Histograms of resolution for the relevant subsets of structures. For each panel, a one-tailed Mann-Whitney 
U test was performed to compare the two distributions.  The p-value was calculated for each pair of distributions 
(p < 0.05 indicates significantly different).  The resulting p-values were (a) 0.73 and (b) 0.13.  The dotted line (if 
shown) indicates that only structures within the defined resolutions were used.  In (b), used 1.65–2.10 Å 
(inclusive) resolution range.  
(c) Δdegree is mapped onto a 1-dimensional representation of the protein sequence (PTP1B numbering), with 
key regions labeled.  a/b labels on the left correspond to the panels in the row above. 
Compare to main Fig. 4b-d. 
 
 



 

 
Figure S8: Robustness of Δdegree plots to random subsetting of input structures.  
A comparison of Δdegree plots using sum networks derived from random subsets of the WPD open state vs. 
WPD closed state structures.  
(a) Δdegree plots with all edges for 5 different randomly selected non-overlapping halves using 50% of all 
structures.  
(b) Δdegree plots with all edges, averaged across a series of 50 random subsets using from 100% of structures 
to 10% of structures. 
 
 
 

 
Figure S9: All PTP structures used in the analysis with bound active-site or allosteric ligands. 
Overlay of all active-site and allosteric ligand-bound structures (individual chains aligned) used in this study.  
The protein is shown in gray cartoon representation.  The active site and one allosteric site (BB site) are 
enclosed in boxes, and the WPD loop is shown in red.  Active-site ligands are shown in yellow; allosteric 
(non-orthosteric) ligands are shown in green. 
 
 



 

 
Figure S10: Resolution distributions for PTP1B, SHP2, and YopH structures. 
Histograms of resolution for each of the pairwise subsets of PTP structures used for analysis in main Fig. 5.   
For each panel a one-tailed Mann-Whitney U test was performed to compare the two distributions.  The p-value 
was calculated for each pair of distributions (p < 0.05 indicates significantly different).  The dotted line (if shown) 
indicates that only structures within the defined resolutions were used.  
(a) PTP1B vs. all other PTPs.  Used 1.20–2.05 Å (inclusive) resolution range; p = 0.14. 
(b) SHP2 vs. all other PTPs.  Used 1.35–2.10 Å (inclusive) resolution range; p = 0.76. 
(c) YopH vs. all other PTPs.  Used 1.05–2.00 Å (inclusive) resolution range; p = 0.16. 
 
 
 



 

 
Figure S11: Sum network comparison between PTP1B, SHP2, and YopH in the WPD open/closed state. 
Analysis of difference in weighted degree (Δdegree) for each residue in the sum networks for the following 
subsets of PTP structures:  
(a) PTP1B in the WPD open state vs. all non-PTP1B structures; SHP2 in the WPD open state vs. all non-SHP2 
structures,  
(b) PTP1B in the WPD closed state vs. all non-PTP1B structures; YopH in the closed state vs. all non-YopH 
structures.   
In each case, Δdegree was calculated relative to all other available PTP structures as a reference.  Δdegree is 
mapped onto a 1-dimensional representation of the protein sequence (PTP1B numbering), with key regions 
labeled.  
Compare to main Fig. 5. 
 
 
 
 
 
 



 

 
Figure S12: Rfree values after automated re-refinement vs. qFit modeling and refinement.  
Blue dots indicate structures with a change in Rfree ≤ 2.5%. 
Red dots indicate structures with an increase in Rfree ≥ 2.5%. 
Diagonal line indicates structures with negligible change in their Rfree before and after refinement. 
(a) Rfree values upon initial refinement vs. in the original PDB deposition. 
(b) Rfree values post qFit refinement vs. upon initial refinement. 
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